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Cluster-robust standard errors

The importance of cluster-robust standard errors

In working with linear regression models, researchers are increasingly
likely to abandon the assumption of i .i .d . errors in favor of a more
realistic error structure. The use of ‘robust’ standard errors has
become nearly ubiquitous in the applied literature.

There are many settings where allowing for heteroskedasticity at the
level of the observation is warranted, but that single deviation from an
i .i .d . structure may not be sufficient to account for the behavior of the
error process.

In the context of time series data, one might naturally consider HAC
standard errors: those robust to both heteroskedasticity and
autocorrelation, familiar to economists as ‘Newey–West’ standard
errors.
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Cluster-robust standard errors

In this talk, we will consider how a broader set of assumptions on the
error process may often be warranted, in the contexts of
cross-sectional data of a hierarchical nature or in panel data.

The key concept to be considered is that of the cluster-robust
covariance matrix, or cluster VCE, which relaxes the i .i .d . assumption
of independent errors, allowing for arbitrary correlation between errors
within clusters of observations.

These clusters may represent some hierarchical relationship in a
cross-section, such as firms grouped by industries, or households
grouped by neighborhood. Alternatively, they may be the observations
associated with each unit (or time period) in a panel dataset.
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Cluster-robust standard errors

As discussed in prior talks by Nichols and Schaffer (UKSUG’07) and in
recent work by Cameron and Miller (UC Davis WP, 2010), estimation of
the VCE without controlling for clustering can lead to understated
standard errors and overstated statistical significance. Just as the use
of the classical (i .i .d .) VCE is well known to yield biased estimates of
precision in the absence of the i .i .d . assumptions, ignoring potential
error correlations within groups, or clusters, may lead to erroneous
statistical inference.

The standard approach to clustering generalizes the ‘White’
(robust/sandwich) approach to a VCE estimator robust to arbitrary
heteroskedasticity: in fact, robust standard errors in Stata correspond
to cluster-robust standard errors computed from clusters of size one.
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Cluster-robust standard errors Simple one-way clustering

Simple one-way clustering

In simple one-way clustering for a linear model, we consider that each
observation (i = 1, . . . ,N) is a member of one non-overlapping cluster,
g (g = 1, . . . ,G).

yig = x′igβ + uig

Given the standard zero conditional mean assumption E [uig |xig] = 0,
the error is assumed to be independent across clusters:

E [uigujg′ |xig ,xjg′ ] = 0

for i 6= j unless g = g′.

How might this behavior of the error process arise?
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Cluster-robust standard errors Common shocks

Common shocks

The within-cluster correlation of errors can arise if the errors are not
i .i .d ., but rather contain a common shock component as well as an
idiosyncratic component:

uig = νg + ζig

where νg is a common shock, or cluster-specific error, itself i .i .d ., and
ζig is an i .i .d . idiosyncratic error. This is equivalent to the error
representation in the random effects model of panel data, but may just
as well arise in a cross-sectional context.

As in random effects, Var [uig] = σ2
ν + σ2

ζ and Cov [uig ,ujg] = σ2
ν , ∀i 6= j .
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Cluster-robust standard errors Common shocks

The intraclass correlation, common to all pairs of errors in a cluster, is

ρu = Corr [uig ,ujg] =
σ2
ν

(σ2
ν + σ2

ζ )

This constant within-cluster correlation is appropriate where
observations within a cluster are exchangeable, in Stata parlance, with
no implicit ordering. Individuals living in a household, families within a
village or firms within an industry might follow this assumption.

If common shocks are the primary cause of error clustering, classical
OLS standard errors are biased downward, and should be inflated by a
factor taking the intraclass correlation into account. The inflation factor
for a particular regressor’s coefficient is also an increasing function of
the within-cluster correlation of the regressor.
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Cluster-robust standard errors Common shocks

In fact, if we had a dataset containing a number of equal-sized clusters,
and regressors taking on constant values within those clusters, OLS
estimation on these data is equivalent to estimating the model

ȳg = x′gβ + ūg

where ȳ contains within-cluster averages of the dependent variable.
There are really only G observations in the model, rather than N.

This model also has a parallel to panel data: it is the between
estimator (xtreg, be) applied in the special case where x values do
not differ within-panel.
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Cluster-robust standard errors Common shocks

If in contrast OLS is applied to the individual data, for a constant
regressor within-cluster, the true variance of an estimated coefficient is
(1 + ρu(N∗− 1)) times larger than the classical OLS estimate, where ρu
is the intraclass correlation and N∗ is the number of observations in
each cluster.

Moulton (REStat, 1990) demonstrated that in many settings this
adjustment factor, and the consequent overstatement of precision, can
be sizable even when ρu is fairly small. In his example, with N = 18946
and G = 49 (US states), ρ̂u = 0.032: a quite modest intrastate error
correlation. With average group size of 387, the correction factor is
13.3, so that cluster-corrected standard errors are

√
13.3 = 3.7 times

larger for a state-level regressor than those computed by standard OLS
techniques.
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Cluster-robust standard errors Panel/longitudinal data

Panel/longitudinal data

In the context of panel or longitudinal data, correlated errors naturally
arise within each panel unit, so that each panel unit or individual can
be considered as a cluster. With a time dimension, the assumption of
equi-correlated errors from the common shocks model is unlikely to be
appropriate, as the strength of unit-specific autocorrelations will
depend on their time difference.

For instance, in the case of AR(1) errors uit = ρui,t−1 + ζit , the
within-cluster error correlation becomes ρ|t−τ | for observations dated t
and τ , respectively. The decline in correlation for longer time spans
implies that taking account of the presence of clustering will have a
smaller effect than in the common shocks model.
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Cluster-robust standard errors Panel/longitudinal data

In the context of a fixed-T , large N panel in which the common
fixed-effects estimator (xtreg, fe) is applied, Stock and Watson
(Econometrica, 2008) showed that the conventional ‘robust’ or
sandwich VCE estimator is inconsistent if T > 2. This result applies
even in the presence of serially uncorrelated errors. They present a
bias-adjusted estimator that circumvents this problem, and illustrate
how the asymptotically equivalent one-way cluster-robust VCE
estimator we discuss next will provide consistent (although not fully
efficient) estimates.

Given Stock and Watson’s critique, Stata’s xtreg, fe command was
modified in version 10.0 (25feb2008) to automatically apply
vce(cluster id), where id is the panel unit identifier variable, if
the robust option is specified.
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The cluster-robust VCE estimator

The cluster-robust VCE estimator

Cluster-robust VCE estimates are generalizations of the ‘sandwich’
method used to compute heteroskedasticity-robust standard errors
(Stata’s robust option), as developed by White (Asymptotic Theory
for Econometricians, 1984). The cluster-robust estimate takes the
sandwich form

VCE(β̂) = (X′X)−1Ω̂(X′X)−1

where

Ω̂ =
G∑

g=1

X′gûg û′gXg

with ûg = yg − Xgβ̂ and g indicating membership in the gth cluster.
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The cluster-robust VCE estimator

This formula is derived from a more general specification where we
consider the population moments, E(xiui), where ui are the error
terms. The corresponding sample moments are

ḡ(β̂) =
1
N

N∑
i=1

xi ûi

where ûi are the residuals computed from point estimates β̂.

The VCE of β̂ is then
V = Q̂−1

xx Ω̂Q̂−1
xx

where Ω̂ is the estimated VCE of ḡ(β̂), with its form based upon our
assumptions about the properties of the error process u.
Q̂−1

xx is merely (X′X)−1.
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The cluster-robust VCE estimator

Under the classical assumptions of i .i .d . errors: independence and
conditional homoskedasticity, Ω = σ2

uI, and the estimate of V is merely
s2(X′X)−1, where s2 is a consistent estimate of σ2

u.

If we relax the assumption of conditional homoskedasticity,

Ω̂ =
1
N

N∑
i=1

xix′i û
2
i

with the VCE estimator as

V̂ = Q̂−1
xx Ω̂Q̂−1

xx

the Huber–sandwich–White ‘robust’ estimator of the VCE, as invoked
by the robust option in Stata. The expression for Ω̂ is a single sum
over observations as we are maintaining the assumption of
independence of each pair of errors.
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The cluster-robust VCE estimator

In the cluster-robust case, where we allow for dependence between
errors belonging to the same cluster, the VCE of ḡ(β̂) becomes

Ω̂ =
1
N

N∑
i=1

ĝi

N∑
i=1

ĝ′i

where the double sum will include within-cluster cross products and
between-cluster cross products of (xi ûi). By the assumption of
independence across clusters, all terms involving errors in different
clusters will be dropped, as they have zero expectation. The remaining
within-cluster terms involve only the sums (xi ûi) for observations in
each cluster, giving rise to the formula for Ω̂ which we presented
earlier.
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The cluster-robust VCE estimator

In the special case where errors are heteroskedastic but still
independently distributed, the number of clusters G is equal to the
number of observations, N, and each cluster is of size one. In this
case the cluster-robust formula becomes the standard
heteroskedasticity-robust ‘White’ formula implemented by Stata’s
robust option, as presented above.

When clusters with Ng > 1 are considered, the number of clusters G
should be compared to the number of parameters to be estimated, k .
The rank of VCE(β̂) is at most G, as the ‘meat’ in the sandwich
contains only G ‘super-observations’. This implies that we cannot test
more than G restrictions on the parameter vector, possibly invalidating
a test for overall significance of the model, while tests on smaller
subsets of the parameters are possible.
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The cluster-robust VCE estimator Bias in the cluster-robust estimator

Bias in the cluster-robust estimator

While the formula for Ω̂ is appropriate as the number of clusters G
goes to infinity, finite-sample corrections are usually applied to deal
with downward bias in the cluster-robust standard errors. Stata uses√

cûg in computing Ω̂, with c ' G
G−1 . Simulations have shown that the

bias is larger when clusters are unbalanced: for instance, in a dataset
with 50 clusters, in which half the data are in a single cluster and the
other 49 contain about one percent of the data. A further finite-sample
adjustment factor N−1

N−K can also be applied.

As a rule of thumb, Nichols and Schaffer (2007) suggest that the data
should have at least 20 balanced clusters or 50 reasonably balanced
clusters. Rogers’ seminal work (Stata Tech.Bull., 1993) suggested that
no cluster should contain more than five per cent of the data.
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The cluster-robust VCE estimator Cluster-robust t and F tests

Cluster-robust t and F tests

When a cluster-robust VCE has been calculated, Wald t or F test
statistics should take account of the number of clusters, rather than
relying on the asymptotically behavior of the statistic as N →∞. The
approach that Stata follows involves using the t distribution with G − 1
degrees of freedom rather than N − k degrees of freedom. If the
number of clusters is small, this will substantially increase the critical
values relative to those computed from the standard Normal (t with
large d.f.).

Some authors (e.g., Donald and Lang (Rev.Ec.Stat., 2007)
recommend using tG−L, where L is the number of regressors constant
within cluster, as an even more conservative approach.
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The cluster-robust VCE estimator Fixed effects models with clustering

Fixed effects models with clustering

In any context where we identify clusters, we could consider including
a fixed-effect parameter for each cluster, as in

yig = αg + x′igβ + uig

As is well known from analysis of this model in the special case of
longitudinal or panel data, the inclusion of the αg parameters centers
each cluster’s residuals around zero. However, as the inclusion of
these fixed-effect parameters does nothing to deal with potential
intra-cluster correlation of errors, it is always advisable to question the
i .i .d . error assumption and produce cluster-robust estimates of the
VCE.

Baum, Nichols, Schaffer (BC / UI / HWU) Cluster-Robust Covariance Matrices BOS’10, July 2010 19 / 42



The cluster-robust VCE estimator Fixed effects models with clustering

By analogy to the panel-data fixed effects model, we may note:
The β parameters may be consistently estimated, but the
coefficients of cluster-invariant regressors are not identified. For
instance, if household data are clustered by state, state-level
variables cannot be included.
For G→∞, the αg parameters cannot be consistently estimated
due to the incidental parameter problem.
The cluster-specific fixed effects, αg , may be correlated with
elements of x.
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By what shall we cluster?

By what shall we cluster?

In many microeconometric datasets there may be several choices for
clustering. In cross-sectional individual-level data, we may consider
clustering at the household level, assuming that individuals’ errors will
be correlated with those of other household members, but may also
cluster at a higher level of aggregation such as neighborhood, city or
state. With nested levels of clustering, clusters should be chosen at
the most aggregate level (e.g., at the state level) to allow for
correlations among individuals at that level. This advice must be
tempered with the concern that a reasonable number of clusters is
defined, as inference from such a model will be limited if G < k .
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By what shall we cluster?

Moving away from pure cross-sectional data to the realm of pooled
cross-section time-series data, we should consider alternative
assumptions on the independence of errors over the time dimension.

For instance, individuals’ errors may be clustered at the level of
household, city or state, but clustering on one of those variables
assumes that a common intraclass correlation applies to all pairs of
errors belonging to individuals in the cluster over time. As discussed
earlier, this may make sense in the unit dimension, but is less sensible
in the time dimension.
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By what shall we cluster?

Conversely, clustering may be defined for a given aggregation and time
period: e.g., in a household study, at the state-year level. However, this
form of clustering maintains the assumption that for a given state,
individuals’ errors are independent over time. This may be quite
unrealistic, given the existence of state-level variables that have
sizable correlations over time, even if they exhibit variation at the
individual level (such as marginal tax rates).

This issue would be similarly relevant if we worked with firm-level panel
data where clustering was defined at the industry-year level. High
autocorrelations among industry-level measures would tend to
invalidate the assumptions that errors for an industry are uncorrelated
over time. If the clustering scheme was defined only in terms of
industry, no restrictions would be placed on those correlations.
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By what shall we cluster?

In panel data where we cluster by the unit identifier (e.g., firm id code),
we allow for within-firm error correlations, but rule out across-firm error
correlations such as those arising from common shocks. On the other
hand, clustering by time period allows for common shocks, but
assumes that errors associated with a given firm are independently
distributed: a questionable assumption. One-way clustering by either
firm or time period has its limitations.
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By what shall we cluster?

In some cases, one-way clustering may be adequate: with errors
clustered by firms and by year, the latter error correlations might be
completely due to common shocks. In that case, the introduction of
time fixed effects would absorb all within-year clustering, and one-way
clustering on firms would be appropriate. However, if these shocks
have a meaningful firm-level component, contemporaneous error
correlations across firms will remain.

These concerns naturally lead to the generalization of the
cluster-robust estimator to two or more dimensions.
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Two-way clustering

Two-way clustering

One-way clustering relies on the assumption that E [uiuj |xi ,xj ] = 0
unless observations i , j belong to the same cluster. In two-way
clustering, the same assumption is made, and the matrix Ω̂ defined
earlier is generalized to

Ω̂ =
N∑

i=1

N∑
j=1

I(i , j)
[
xix′j ûi ûj

]
where I(i , j) = 1 for observations in the same cluster, and 0 otherwise.
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Two-way clustering

Computation of the two-way cluster-robust VCE is straightforward, as
Thompson (SSRN WP, 2006) illustrates. The VCE may be calculated
from

VCE(β̂) = VCE1(β̂) + VCE2(β̂)− VCE12(β̂)

where the three VCE estimates are derived from one-way clustering on
the first dimension, the second dimension and their intersection,
respectively. As these one-way cluster-robust VCE estimates are
available from most Stata estimation commands, computing the
two-way cluster-robust VCE involves only a few matrix manipulations.

This procedure has been automated in Baum, Schaffer, Stillman’s
ivreg2 and Schaffer’s xtivreg2 routine on SSC, which may be
employed to estimate OLS models as well as models employing
instrumental variables, IV-GMM and LIML.
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Two-way clustering

One concern that arises with two-way (and multi-way) clustering is the
number of clusters in each dimension. With one-way clustering, we
should be concerned if the number of clusters G is too small to
produce unbiased estimates. The theory underlying two-way clustering
relies on asymptotics in the smaller number of clusters: that is, the
dimension containing fewer clusters. The two-way clustering approach
is thus most sensible if there are a sizable number of clusters in each
dimension.
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Two-way clustering

Just as in one-way clustering, finite-sample adjustments should be
made for the number of clusters. One approach, followed by Cameron
et al.’s cgmreg routine, adjusts each of the three covariance matrices
by a ratio reflecting the number of clusters in that matrix.

An alternate approach, implemented in ivreg2, computes VCE(β̂)
and then scales by M

M−1 , where M = min(G1,G2) and G1 and G2 are
the number of clusters in the two dimensions. Both approaches can
also include a finite-sample adjustment factor N−1

N−K . In ivreg2, both
adjustment factors are invoked with the small option.

Baum, Nichols, Schaffer (BC / UI / HWU) Cluster-Robust Covariance Matrices BOS’10, July 2010 29 / 42



Two-way clustering

Just as in one-way clustering, finite-sample adjustments should be
made for the number of clusters. One approach, followed by Cameron
et al.’s cgmreg routine, adjusts each of the three covariance matrices
by a ratio reflecting the number of clusters in that matrix.

An alternate approach, implemented in ivreg2, computes VCE(β̂)
and then scales by M

M−1 , where M = min(G1,G2) and G1 and G2 are
the number of clusters in the two dimensions. Both approaches can
also include a finite-sample adjustment factor N−1

N−K . In ivreg2, both
adjustment factors are invoked with the small option.

Baum, Nichols, Schaffer (BC / UI / HWU) Cluster-Robust Covariance Matrices BOS’10, July 2010 29 / 42



Two-way clustering

We must keep in mind that the cluster-robust concept is much more
general than the panel data setting. For instance, we may have
firm-level data, categorized by both industry and region, and we may
doubt the independence of errors within industry (for firms in different
regions) as well as within region (for firms in different industries).

If we created a single clustering variable from the intersection of
industries and regions, we would allow for error correlations between
firms that were both in industry i and region j , and rule out correlations
among all other pairs of firms: possibly an overly restrictive approach.

Revisiting the two-way clustering formula, you can see that one-way
clustering by the intersection of the two dimensions would correspond
to the third term in the formula, VCE12(β̂), whereas full two-way
clustering by industry and region would allow for correlated errors
across those dimensions as well.
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Multi-way clustering

Multi-way clustering

With that caveat in mind, we may extend the notion of cluster-robust
VCEs to three or more non-nested dimensions. Multi-way clustering is
described by Cameron, Gelbach, Miller [CGM] (JBES, forthcoming;
UC Davis WP 09-9). For instance, we might consider data on
individual workers, clustered by industry, occupation and US state.

The logic to compute the Ω̂ matrix, as CGM show, is a generalization
of the formula for two-way clustering, and may be implemented using
only one-way cluster-robust estimates available from many Stata
estimation commands. Alternatively, CGM provide the cgmreg
command, downloadable from
http://www.econ.ucdavis.edu/faculty/dlmiller/statafiles/,
which implements multi-way clustering for linear regressions.
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Combining HAC and cluster-robust methods

Combining HAC and cluster-robust methods

In the context of panel data, the HAC (or ‘Newey–West’) estimator of
the VCE allows for arbitrary serial correlation within each panel’s errors,
but the assumption of independence across units’ errors is preserved.
If we employ clustering by time period, we allow for common shocks
across panel units’ errors. When combined with the HAC estimator, this
models common correlated shocks which will damp over time.

As the application of the HAC estimator requires a sufficient number of
time periods per panel unit for consistency, the combination of HAC
with clustering in the time dimension will be similarly demanding, and
should not be employed in short panels.
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Combining GLS and cluster-robust methods

Combining GLS and cluster-robust methods

Cluster-robust techniques, as generalizations of the
heteroskedasticity-robust ‘White’ VCE estimator, do not assume any
particular form for the errors beyond the assumption of potential
correlation within clusters. In some applications, we make use of
generalized least squares (GLS) techniques to explicitly model
departures from i .i .d . errors. For instance, we may explicitly deal with
groupwise heteroskedasticity by estimating s2 values from each group
of errors, and use weights in regress to produce GLS estimates.

This specification still presumes independence among the errors. That
assumption may be relaxed by considering the groups as clusters, and
computing the weighted least squares regression with a cluster-robust
VCE: a technique that could be extended to two-way or multi-way
clustering.
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Testing for cluster effects

Testing for cluster effects

We might naturally wish to test whether the computation of the
cluster-robust VCE is warranted, as in the case of ‘robust’ standard
errors, the classical VCE estimate is to be preferred if i .i .d .
assumptions are satisfied.

For the case of one-way clustering in fixed-effects panel models, Kézdi
(Hungarian Stat. Rev., 2004) presents a test based on White’s
(Econometrica, 1980) direct test for heteroskedasticity which considers
the contrasts between an estimator of the VCE that is always
consistent and one imposing more restrictive assumptions on the error
process. A quadratic form in the vector of contrasts, in a framework
similar to a Hausman test, yields a test statistic distributed χ2 under
the null hypothesis that the more restrictive assumptions (e.g.,
independence of errors, or i .i .d . errors) are supported.
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Testing for cluster effects

Kézdi’s study of his test’s properties suggests that it performs well,
even in the common ‘small T , large N ’ setting, and also is reliable in
models where T becomes large.

A preliminary version of the Kézdi test for the hypothesis that the
errors are i .i .d . versus the alternative that they exhibit within-cluster
dependence is implemented as Stata command chatest, with the
panel counterpart xtchatest. These routines have not been
released, as they are still under development. We hope to extend them
to tests of two-way (or multi-way) clustering.
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Some empirical examples

Some empirical examples

Compare VCE estimates from a cross-section dataset computed under
assumptions:

i .i .d .
robust
cluster-robust by industry (9 categories)
cluster-robust by occupation (9 categories)
two-way cluster-robust
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Some empirical examples

Table: Wage equation using modified nlsw88

(1) (2) (3) (4) (5)
iid robust clus_ind clus_occ clus_2way

hours 0.0545∗∗∗ 0.0545∗∗∗ 0.0545∗∗ 0.0545∗∗ 0.0545∗∗
(0.0114) (0.0113) (0.0166) (0.0222) (0.0199)

ttl_exp 0.268∗∗∗ 0.268∗∗∗ 0.268∗∗∗ 0.268∗∗∗ 0.268∗∗∗
(0.0260) (0.0250) (0.0387) (0.0439) (0.0471)

black -0.696∗∗ -0.696∗∗∗ -0.696∗∗ -0.696∗ -0.696∗
(0.272) (0.251) (0.301) (0.330) (0.317)

collgrad 3.170∗∗∗ 3.170∗∗∗ 3.170∗∗∗ 3.170∗∗∗ 3.170∗∗∗
(0.274) (0.314) (0.443) (0.643) (0.491)

south -1.365∗∗∗ -1.365∗∗∗ -1.365∗∗∗ -1.365∗∗∗ -1.365∗∗∗
(0.243) (0.239) (0.267) (0.370) (0.318)

N 2141 2141 2141 2141 2141
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Some empirical examples

Some empirical examples

Compare VCE estimates from a panel dataset computed under
assumptions:

i .i .d .
cluster-robust by company (10 units)
two-way cluster-robust (company and time)
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Some empirical examples

Table: Investment equation using grunfeld

(1) (2) (3)
iid clus_comp clus_2way

mvalue 0.110∗∗∗ 0.110∗∗∗ 0.110∗∗∗
(0.0119) (0.0152) (0.0117)

kstock 0.310∗∗∗ 0.310∗∗∗ 0.310∗∗∗
(0.0174) (0.0528) (0.0435)

N 200 200 200
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Some empirical examples

Some empirical examples

Compare VCE estimates from a panel dataset computed under
assumptions:

i .i .d .
HAC with 4 lags
two-way cluster-robust HAC, 4 lags (correlated common shocks)
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Some empirical examples

Table: Investment equation using grunfeld

(1) (2) (3)
iid hac4 hac4_2way

mvalue 0.110∗∗∗ 0.110∗∗∗ 0.110∗∗∗
(0.0119) (0.0238) (0.00794)

kstock 0.310∗∗∗ 0.310∗∗∗ 0.310∗∗∗
(0.0174) (0.0517) (0.0344)

N 200 200 200
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Work in progress

Work in progress

We are currently working on the chatest and xtchatest routines in
order to provide White-style tests for clustering vs. i .i .d ., and extending
Kézdi’s logic to two-way clustering.

We are also considering whether tests of this nature (which include
White’s (Econometrica, 1980) general test) may be adapted to
consider only specific coefficients of interest. That is, are particular
coefficients’ standard errors and confidence intervals seriously
affected by the assumed form of their VCE?
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