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Background

m There has been an increase in the use of panel data in the
social sciences in recent years

m One advantage of panel data is the ability to control for
unobserved time-invariant heterogeneity

m While random effects estimators exists for a range of limited
dependent variable models few fixed effects estimators are
available

m This talk will review the available estimators for the fixed
effects ordered logit (FE-OL) model and discuss ways of
implementing these in Stata

m Draws on recent paper by Baetschmann, Staub and
Winkelmann (2011)
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m The starting point is a latent variable model
Vi=xBtaiter, i=1.. N t=1.,T

m «; can be assumed to uncorrelated with x; and normally
distributed (random effects)

m Or we can allow a; to be correlated with x;; (fixed effects)

m We observe yj; which is related to y;; as follows
yie=k if p, <y;< Heprr k=1,...K

m The thresholds are assumed to be strictly increasing
(Hy < Mypy VK) and py = —coand pye ) = co.
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m ¢;; is assumed to be |ID standard logistic

m Then the probability of observing outcome k for individual i
at time t is

Pr(yie = klxie, i) = A(pyq — XieP — i) — A(py — xie p — i)
m There are two problems with ML estimation of this expression
(Baetschmann et al., 2011):
m ldentification: only aj = y, — &, can be identified

m Under fixed- T asymptotics aj cannot be estimated
consistently due to the incidental parameter problem

m This also affects estimates of B - the bias can be substantial
in short panels (Greene, 2004)
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The Chamberlain estimator

m Proposed solution: collapse y;; to a binary variable and use
Chamberlain’s estimator for fixed effects binary logit models

m Define d¥ = I(y;; > k) and d¥ = (dX, ..., d¥)

m The sum of all individual outcomes over time is a sufficient
statistic for a;

T o,
PE(B) = Prldt = jil Y d = a) = P IP)
= Y e &PU'xipB)
m Chamberlain (1980) shows that maximizing the conditional
log-likelihood LL¥(b) = Y"1 In P(b) gives a consistent
estimate of 8
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A straightforward way of estimating the FE-OL model is
therefore to pick a cutoff point k and use the Chamberlain
estimator

m But note that individuals with constant df; do not contribute
to the likelihood function since
Pr(df =1|x/,dk=T)=Pr(df =0|L/,dk =0) =1
m Any particular choice of cutoff is therefore likely to lead to
some observations being discarded

m The question is then whether we can do better than choosing
a single cutoff

m We will review three estimators that have been proposed in
the literature
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The Das and van Soest (DvS) two-step estimator

. . ki . .
m Since the estimator of B at any cutoff (B ) is consistent one
can estimate the model for all K — 1 cutoffs and combine the
estimates in a second step

m The efficient combination weights the estimates by their
variance so that

~DvS ~2/

87 = arg mbin(B2/ b, B ) B b B = Y

m The solution to this problem is

~DvS

‘B — (H,Q_IH)_IH/Q_I(B2/, ) K7

B

H is the matrix of K — 1 stacked identity matrices of
dimension L (number of coefs. in the model)
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The DvS estimator can be conveniently implemented in Stata as
follows

Step 1: Estimate the model at each (feasible) cutoff and save the
results using estimates store. | say "feasible" because some
cutoffs may result in very small samples which can lead to
convergence problems.

Step 2: Combine the estimates using suest. This provides an
estimate of ().

Step 3: Calculate (H’ﬁle)*lH’ﬁfl(ﬁw, ...,BKI)’ (estimates)

and (H'Q1H)~! (variance-covariance of estimates) using Stata’s
matrix language (or Mata)

The next two slides have some example code. Note that the code
assumes that the dependent variable is coded 1, ..., K with no gaps.
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local y vy /1 Specify nane of dependent variable after the first "y"
local x x1 x2 /1 Specify nanes of independent variables after the first "x"
local idid /1 Specify name of id variable after the first "id"

* Mark estination sanple
nar ksanpl e touse
nmarkout “touse' ‘y' “x' ‘id'

* Run clogit for each cutoff and conbine using suest

* Note that with many (nost?) datasets this part of the
* code will have to be edited since not all cutoffs can
* be used to estimate the nodel

qui sum’y' if “touse'

| ocal ymax = r(max)

tenpvar esanple

gen “esanple’ =0
tenpname BVAT
forvalues i = 2(1) ymax' {
tenpvar y i’
qui gen ‘y'i'' ="y >="i' if “touse'
qui clogit “y'i'' “x' if “touse', group('id")
qui replace “esanple’ =1 if e(sanple)

estimtes store “y'i''

local suest “suest' “y'i''

capture matrix “BMAT' = "BMAT', e(b)
if (_rc!=0) matrix 'BMAT' = e(b)

qui suest "suest’
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* Calculate Das and Van Soest estimates

tenpname VMAT A B COV

local k : word count “x'

matrix “VMAT' = e(V)

matrix “A = J((Cymax'-1),1, 1) # (" k')

matrix "B = (invsyn( A ' *invsyn( VMAT' )* A )* A ' *invsyn( VMAT' )* BMAT ')’
matrix “COV' = invsyn( A '*invsyn( VMAT )* A")

* Tidy up matrix nanes and present results
matrix colnames "B = "x'
matrix coleq "B =:
matrix col names *COV' = "x
matrix coleq "COV = :
matrix rownames * COV'
matrix roweq ~COV = :

qui cou if “esanple'

local obs =r(N

ereturn post ‘B “COV, depname('y') obs( obs') esanple( esanple')
ereturn display

* Calculate the number of individuals

tenpvar | ast

bysort “id': gen “last' = _n==_Nif e(sanple)
cou if “last'==1

Dickerson, Hole, Munford, University of Sheffield timators for the fixed effects ordered logit model



The Blow-Up and Cluster (BUC) estimator

m As an alternative to the DvS estimator Baetschmann et al.
(2011) propose estimating all dichotomisations jointly subject
to the restriction that g2 = g3 = ... = g~

m This can be done by creating a dataset where each individual
is repeated K — 1 times, each time using a different cutoff to
collapse the dependent variable

m Baetschmann et al. (2011) suggests that the standard errors
should be adjusted for clustering as some individuals
contribute to several terms in the log-likelihood function

m This estimator does not suffer from the potential problems
associated with some cutoffs resulting in small sample sizes
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m The next slide has an example of how the BUC estimator can
be implemented as an ado-file

m Note that the way the ID variable is created in Baetschmann
et al.’s code can cause precision problems with some datasets
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*! bucologit 1.0.1 2Sept2011
*1 author arh

program bucol ogi t
version 11.2
syntax varlist [if] [in], |d(varnane)

preserve

mar ksanpl e touse
markout “touse' ‘id

gettoken yraw x : varlist
tenpvar y

qui egen int y' = group( yraw)
qui keep “y' “x' id'" ‘touse'
qui keep if "touse'

qui sum 'y
| ocal ymax = r(max)
forvalues i = 2(1) ymax' {
qui gen byte ‘yraw ‘i’ = y' >= i’
}
drop "y’
tenpvar n cut new d
qui gen long 'n' = _n
qui reshape long “yraw, i('n") j(‘cut')
qui egen long “newid = group( id ‘“cut')

sort “newd'
clogit “yraw “x', group( newid ) cluster( id")

restore
end

exit
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BUC example with simulated data

set nore off
set seed 12345

* Generate sinulated data

drop _all

set obs 1000

gen id = _n

gen u = 0.5*i nvnornmal (uniforn())
expand 10

sort id

matrix means

=0,0

matrix sds = 1,1

drawnorm x1 x2, nean(neans) sd(sds)
replace x1 = 0.5*x1 + 0.5%u

gen e = logit(uniforn())

gen y_star = x1 + 0.5*x2 + u + e
geny =1if y star <-4

replace y = 2 if y_star >= -4 & y_star < -2.5
replace y = 3 if y_star >= -2.5 & y_star < -1.5
replace y = 4 if y_star >= -1.5 & y_star < -0.5
replace y = 5 if y_star >= -0.5 & y_star < 0.5
replace y = 6 if y_star >= 0.5 & y_star < 2
replace y = 7 if y_star >= 2

*Run BUC npdel using the -bucol ogit- conmand
bucol ogit y x1 x2, i(id)
*Note: the i() option is equivalent to group() in the -clogit- syntax

*Conpare results with standard ordered | ogit
ologit y x1 x2
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The Ferrer-i-Carbonell and Frijters (FF) estimator

m Ferrer-i-Carbonell and Frijters (2004) have proposed an
estimator where an optimal cutoff is defined for each individual

m This is in contrast to the previous estimators which use all
possible dichotomisations

m The optimal cutoff is the one that minimises the (individual)
Hessian matrix at a preliminary estimate of

m Many applied papers have instead used a simplified rule for
choosing the cutoff, such as the individual-level mean or
median of y;;

m Baetschmann et al. (2011) show that the FF-type estimators
are in general inconsistent

m Stata code for implementing the FF estimator is available on
request
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Empirical application

m We use the various estimators to estimate the relationship
between commuting time and satisfaction with life overall and
satisfaction with leisure time

m Sample of working age individuals from the BHPS
(2002-2008)

m The dependent variable is ordered and ranges from 1-7
(1=Not satisfied at all, 7=Completely satisfied)

m We use all three estimators and compare the results to a
standard ordered logit model
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Satisfaction with life overall

Ordered Logit DvS BUC FF
Commuting Time -0.102" 0.048 0.091 0.107"
(0.043) (0.064) (0.065) (0.059)
N 34035 33105 33302 33302

Standard errorsin parentheses
"p<0.10," p<005 " p<0.01

Controls: HH income, education, FT/PT work, marital status, savings,
commuting mode and age. In the ordered logit model we also control for
gender.
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Satisfaction with leisure time

Ordered Logit DvS BUC FF
Commuting Time -0.280"" 0271 -0.269" -0.310™
(0.049) (0.067) (0.067) (0.059)
N 34099 30476 32128 32128

Standard errorsin parentheses
"p<0.10," p<005 " p<0.01

Controls: HH income, education, FT/PT work, marital status, savings,
commuting mode and age. In the ordered logit model we also control for
gender.
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Concluding remarks

m In a simulation experiment Baetschmann et al. (2011) find
that the DvS and BUC estimators generally perform well

m The FF estimator is found to be biased

m BUC is preferred when the number of responses in some
response categories is very low

m In our empirical application the difference between the
estimators is fairly minor
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