A review of estimators for the fixed effects ordered logit model

Andy Dickerson Arne Risa Hole Luke Munford University of Sheffield

UK Stata Users Group Meeting 2011

Background

- There has been an increase in the use of panel data in the social sciences in recent years
- One advantage of panel data is the ability to control for unobserved time-invariant heterogeneity
- While random effects estimators exists for a range of limited dependent variable models few fixed effects estimators are available
- This talk will review the available estimators for the fixed effects ordered logit (FE-OL) model and discuss ways of implementing these in Stata
- Draws on recent paper by Baetschmann, Staub and Winkelmann (2011)

The model

The starting point is a latent variable model

$$y_{it}^* = x_{it}' \beta + \alpha_i + \varepsilon_{it}, \quad i = 1, ..., N \quad t = 1, ..., T$$

- α_i can be assumed to uncorrelated with x_{it} and normally distributed (random effects)
- Or we can allow α_i to be correlated with x_{it} (fixed effects)
- We observe y_{it} which is related to y_{it}^* as follows

$$y_{it} = k$$
 if $\mu_k < y_{it}^* \le \mu_{k+1}$, $k = 1, ..., K$

■ The thresholds are assumed to be strictly increasing $(\mu_k < \mu_{k+1} \ \forall k)$ and $\mu_1 = -\infty$ and $\mu_{K+1} = \infty$.

- $\mathbf{\epsilon}_{it}$ is assumed to be IID standard logistic
- Then the probability of observing outcome k for individual i at time t is

$$Pr(y_{it} = k | x_{it}, \alpha_i) = \Lambda(\mu_{k+1} - x'_{it}\beta - \alpha_i) - \Lambda(\mu_k - x'_{it}\beta - \alpha_i)$$

- There are two problems with ML estimation of this expression (Baetschmann et al., 2011):
- Identification: only $\alpha_{ik} = \mu_k \alpha_i$ can be identified
- Under fixed-T asymptotics α_{ik} cannot be estimated consistently due to the incidental parameter problem
- This also affects estimates of β the bias can be substantial in short panels (Greene, 2004)

The Chamberlain estimator

- Proposed solution: collapse y_{it} to a binary variable and use Chamberlain's estimator for fixed effects binary logit models
- Define $d_{it}^k = I(y_{it} \ge k)$ and $d_i^k = (d_{i1}^k, ..., d_{iT}^k)$
- The sum of all individual outcomes over time is a sufficient statistic for α_i

$$P_{i}^{k}(\beta) = \Pr(d_{i}^{k} = j_{i} | \sum_{t=1}^{T} d_{it}^{k} = a_{i}) = \frac{\exp(j_{i}'x_{i}\beta)}{\sum_{j \in B_{i}} \exp(j'x_{i}\beta)}$$

Chamberlain (1980) shows that maximizing the conditional log-likelihood $LL^k(b) = \sum_{i=1}^N \ln P_i^k(b)$ gives a consistent estimate of β

- A straightforward way of estimating the FE-OL model is therefore to pick a cutoff point k and use the Chamberlain estimator
- But note that individuals with constant d_{it}^k do not contribute to the likelihood function since $\Pr(d_i^k = 1 | \sum_{t=1}^T d_{it}^k = T) = \Pr(d_i^k = 0 | \sum_{t=1}^T d_{it}^k = 0) = 1$
- Any particular choice of cutoff is therefore likely to lead to some observations being discarded
- The question is then whether we can do better than choosing a single cutoff
- We will review three estimators that have been proposed in the literature

The Das and van Soest (DvS) two-step estimator

- Since the estimator of β at any cutoff $(\widehat{\beta}^k)$ is consistent one can estimate the model for all K-1 cutoffs and combine the estimates in a second step
- The efficient combination weights the estimates by their variance so that

$$\widehat{\boldsymbol{\beta}}^{\textit{DvS}} = \arg\min_{\boldsymbol{b}} (\widehat{\boldsymbol{\beta}}^{2\prime} - \boldsymbol{b}', ..., \widehat{\boldsymbol{\beta}}^{K\prime} - \boldsymbol{b}') \Omega^{-1} (\widehat{\boldsymbol{\beta}}^{2\prime} - \boldsymbol{b}', ..., \widehat{\boldsymbol{\beta}}^{K\prime} - \boldsymbol{b}')'$$

The solution to this problem is

$$\widehat{\boldsymbol{\beta}}^{\text{DvS}} = (H'\Omega^{-1}H)^{-1}H'\Omega^{-1}(\widehat{\boldsymbol{\beta}}^{2\prime},...,\widehat{\boldsymbol{\beta}}^{K\prime})'$$

H is the matrix of K-1 stacked identity matrices of dimension L (number of coefs. in the model)

The DvS estimator can be conveniently implemented in Stata as follows

Step 1: Estimate the model at each (feasible) cutoff and save the results using estimates store. I say "feasible" because some cutoffs may result in very small samples which can lead to convergence problems.

Step 2: Combine the estimates using suest. This provides an estimate of Ω .

Step 3: Calculate $(H'\widehat{\Omega}^{-1}H)^{-1}H'\widehat{\Omega}^{-1}(\widehat{\beta}^{2\prime},...,\widehat{\beta}^{K\prime})'$ (estimates) and $(H'\widehat{\Omega}^{-1}H)^{-1}$ (variance-covariance of estimates) using Stata's matrix language (or Mata)

The next two slides have some example code. Note that the code assumes that the dependent variable is coded 1, ..., K with no gaps.

```
local v v
                      // Specify name of dependent variable after the first "v"
                      // Specify names of independent variables after the first "x"
local x x1 x2
local id id
                      // Specify name of id variable after the first "id"
* Mark estimation sample
marksample touse
markout 'touse' 'y' 'x' 'id'
* Run clogit for each cutoff and combine using suest
* Note that with many (most?) datasets this part of the
* code will have to be edited since not all cutoffs can
* be used to estimate the model
qui sum 'y' if 'touse'
local ymax = r(max)
tempvar esample
gen 'esample' = 0
tempname BMAT
forvalues i = 2(1) 'vmax' {
       tempvar v`i'
       qui gen `y`i'' = `y' >= `i' if `touse'
       qui clogit `v`i'' `x' if `touse', group(`id')
       qui replace 'esample' = 1 if e(sample)
       estimates store `v`i''
       local suest 'suest' 'v'i''
       capture matrix `BMAT' = `BMAT', e(b)
       if ( rc != 0) matrix `BMAT' = e(b)
qui suest 'suest'
```

```
* Calculate Das and Van Soest estimates
tempname VMAT A B COV
local k : word count 'x'
matrix `VMAT' = e(V)
matrix `A' = J((`vmax'-1),1,1)#I(`k')
matrix `B' = (invsvm(`A''*invsvm(`VMAT')*`A')*`A''*invsvm(`VMAT')*`BMAT'')'
matrix `COV' = invsvm(`A''*invsvm(`VMAT')*`A')
* Tidy up matrix names and present results
matrix colnames 'B' = 'x'
matrix coleg `B' = :
matrix colnames `COV' = `x'
matrix coleg `COV' = :
matrix rownames `COV' = `x'
matrix roweg 'COV' = :
qui cou if `esample'
local obs = r(N)
ereturn post `B' `COV', depname(`y') obs(`obs') esample(`esample')
ereturn display
* Calculate the number of individuals
tempvar last
bysort 'id': gen 'last' = n == N if e(sample)
cou if `last'==1
```

The Blow-Up and Cluster (BUC) estimator

- As an alternative to the DvS estimator Baetschmann et al. (2011) propose estimating all dichotomisations jointly subject to the restriction that $\beta^2 = \beta^3 = \cdots = \beta^K$
- This can be done by creating a dataset where each individual is repeated K-1 times, each time using a different cutoff to collapse the dependent variable
- Baetschmann et al. (2011) suggests that the standard errors should be adjusted for clustering as some individuals contribute to several terms in the log-likelihood function
- This estimator does not suffer from the potential problems associated with some cutoffs resulting in small sample sizes

- The next slide has an example of how the BUC estimator can be implemented as an ado-file
- Note that the way the ID variable is created in Baetschmann et al.'s code can cause precision problems with some datasets

```
*! bucologit 1.0.1 2Sept2011
*! author arh
program bucologit
       version 11.2
       syntax varlist [if] [in], Id(varname)
       preserve
       marksample touse
       markout `touse' `id'
       gettoken yraw x : varlist
       tempvar y
       qui egen int `y' = group(`yraw')
       qui keep 'y' 'x' 'id' 'touse'
       qui keep if `touse'
       qui sum `v'
       local vmax = r(max)
       forvalues i = 2(1) 'vmax' {
               qui gen byte 'vraw''i' = 'v' >= 'i'
       drop `v'
       tempvar n cut newid
       qui gen long 'n' = n
       qui reshape long `yraw', i(`n') j(`cut')
       qui egen long `newid' = group(`id' `cut')
       sort 'newid'
       clogit 'yraw' 'x', group('newid') cluster('id')
       restore
end
```

exit

BUC example with simulated data

```
set more off
set seed 12345
* Generate simulated data
drop all
set obs 1000
gen id = n
gen u = 0.5*invnormal(uniform())
expand 10
sort id
matrix means = 0.0
matrix sds = 1.1
drawnorm x1 x2, mean(means) sd(sds)
replace x1 = 0.5*x1 + 0.5*u
gen e = logit(uniform())
gen v star = x1 + 0.5*x2 + u + e
gen v = 1 if v star < -4
replace v = 2 if v star >= -4 & v star < -2.5
replace y = 3 if y_star >= -2.5 \& y_star < -1.5
replace v = 4 if v star >= -1.5 & v star < -0.5
replace y = 5 if y star >= -0.5 & y star < 0.5
replace y = 6 if y star >= 0.5 & y star < 2
replace y = 7 if y star >= 2
*Run BUC model using the -bucologit- command
bucologit y x1 x2, i(id)
*Note: the i() option is equivalent to group() in the -clogit- syntax
*Compare results with standard ordered logit
ologit v x1 x2
```

The Ferrer-i-Carbonell and Frijters (FF) estimator

- Ferrer-i-Carbonell and Frijters (2004) have proposed an estimator where an optimal cutoff is defined for each individual
- This is in contrast to the previous estimators which use all possible dichotomisations
- The optimal cutoff is the one that minimises the (individual) Hessian matrix at a preliminary estimate of β
- Many applied papers have instead used a simplified rule for choosing the cutoff, such as the individual-level mean or median of yit
- Baetschmann et al. (2011) show that the FF-type estimators are in general inconsistent
- Stata code for implementing the FF estimator is available on request

Empirical application

- We use the various estimators to estimate the relationship between commuting time and satisfaction with life overall and satisfaction with leisure time
- Sample of working age individuals from the BHPS (2002-2008)
- The dependent variable is ordered and ranges from 1-7 (1=Not satisfied at all, 7=Completely satisfied)
- We use all three estimators and compare the results to a standard ordered logit model

Satisfaction with life overall

	Ordered Logit	DvS	BUC	FF
Commuting Time	-0.102**	0.048	0.091	0.107^{*}
	(0.043)	(0.064)	(0.065)	(0.059)
N	34035	33105	33302	33302

Standard errors in parentheses p < 0.10, p < 0.05, p < 0.01

Controls: HH income, education, FT/PT work, marital status, savings, commuting mode and age. In the ordered logit model we also control for gender.

Satisfaction with leisure time

	Ordered Logit	DvS	BUC	FF
Commuting Time	-0.280*** (0.049)	-0.271*** (0.067)	-0.269*** (0.067)	-0.310*** (0.059)
N	34099	30476	32128	32128

Standard errors in parentheses p < 0.10, p < 0.05, p < 0.01

Controls: HH income, education, FT/PT work, marital status, savings, commuting mode and age. In the ordered logit model we also control for gender.

Concluding remarks

- In a simulation experiment Baetschmann et al. (2011) find that the DvS and BUC estimators generally perform well
- The FF estimator is found to be biased
- BUC is preferred when the number of responses in some response categories is very low
- In our empirical application the difference between the estimators is fairly minor