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Polynomials and other splines

I A kth-degree spline is a function from the X-axis to the Y-axis,
defined using an ascending sequence of knots
s0 < s1 < . . . < sq on the X-axis.

I (Typically, the sequence of knots is assumed to be part of an
extended sequence of form . . . s−1 < s0 < . . . < sq < sq+1 . . .
extending outwards to ±∞.)

I In each interval sj ≤ x < sj+1 between two successive knots, the
spline is equal to a kth degree polynomial.

I (Therefore, a polynomial, restricted to a bounded interval, is a
special case of a spline, with knots at the boundaries.)

I At each knot sj, the first k − 1 derivatives of the spline are
continuous.

I Therefore, a spline of degree 0 is a step function, a spline of
degree 1 is linearly interpolated between the knots, and splines
of degree 2, 3 and higher are interpolated as curves.
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Spline models for mpg with respect to weight in the auto data

I The plots illustrate splines
of degree 0, 1, 2 and 3.

I The degree–zero spline is
a step function, constant
within intervals.

I The degree–1 spline is
interpolated linearly
between reference points
on the X–axis.

I The degree–2 and
degree–3 splines are
interpolated quadratically
and cubically.
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Sensible parameters for splines

I A polynomial model, defined by Y =
∑K

j=0 bjXj, has
semi–sensible parameters bj, expressed in units such as Y–units
per squared X–unit.

I Such parameters are not always easy to explain to
non–mathematical colleagues.

I Other spline models are frequently parameterized in even less
intuitive ways, sometimes expressed in Y–axis units per inverse
X–axis unit.

I Such parameters are frequently not easy to understand, even for
mathematicians, who sometimes use nonsensical jargon such as
“non–parametric regression” to describe these models.

I It would be easier if the parameters were values of the spline at
reference points on the X–axis.

I Or, alternatively, differences or ratios between spline values at
reference points and spline values at a base reference point.
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The flexcurv module of the bspline package

I The SSC package bspline, introduced in STB[2] and at the
2001 UK Stata Users’ Meeting[3], now has 3 modules.

I The module bspline inputs an X–variable and a sequence of
knots, and generates a basis of Schoenberg B–splines[4].

I The module frencurv uses bspline, followed by matrix
inversion, to generate a basis of reference splines, whose
corresponding regression parameters are spline values at
reference points on the X–axis.

I frencurv chooses default knots equal to reference points for
odd–degree splines, and to midpoints between reference points
for even–degree splines.

I For splines of degree k > 1, this implies reference points off the
edge of the X–axis, which are not easy to explain.

I The recently–added module flexcurv uses frencurv to
generate reference splines for within–range reference points,
using automatically–generated regularly–spaced knots.
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Parameters for splines for mpg with respect to weight in the auto data

I The plots again illustrate
splines of degree 0, 1, 2
and 3.

I However, this time,
instead of the observed
values, we see 95%
confidence intervals for
the spline parameters.

I These parameters are
values of the splines at
the reference points
indicated on the X–axis.
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So how do we use flexcurv?

I flexcurv inputs an X–variable, a list of reference points on
the X–axis, and a user–specified spline degree (or power).

I It outputs a basis of new variables, one for each reference point,
known as reference splines.

I (It also calculates a sequence of regularly–spaced knots, which
the user need not think about.)

I Splines of the specified degree, with the determined sequence of
knots, are linear combinations of these reference splines.

I Therefore, the reference splines can be included in a design
matrix, for input to an estimation command, using the noconst
option.

I So, reference splines are an extension, to continuous factors, of
the indicator (or “dummy”) variables generated for discrete
factors, using xi: or tabulate.
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Example: Cubic spline of mpg with respect to weight

We begin by loading the auto data, and use flexcurv to input a
list of 6 reference points and generate a basis of 6 cubic reference
splines in weight, which we then describe:

. flexcurv, xvar(weight) refpts(1760(616)4840) power(3)
> generate(sp_);

. describe sp_*;

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------------------------------------------------------------
sp_1 float %8.4f Spline at 1,760
sp_2 float %8.4f Spline at 2,376
sp_3 float %8.4f Spline at 2,992
sp_4 float %8.4f Spline at 3,608
sp_5 float %8.4f Spline at 4,224
sp_6 float %8.4f Spline at 4,840

Note that each reference spline has a variable label, indicating its
reference point on the weight axis.
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Regression of mpg with respect to the splines in weight

We then use regress, with the noconst option, to fit a linear
regression model of mpg with respect to the 6 reference splines:

. regress mpg sp_*, noconst nohead;
------------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

sp_1 | 30.42892 1.875043 16.23 0.000 26.68733 34.17051
sp_2 | 24.95794 .7959588 31.36 0.000 23.36963 26.54625
sp_3 | 20.26864 .8231831 24.62 0.000 18.626 21.91127
sp_4 | 17.54179 .7730685 22.69 0.000 15.99916 19.08443
sp_5 | 15.57965 1.413921 11.02 0.000 12.75821 18.40108
sp_6 | 11.80283 2.882191 4.10 0.000 6.051511 17.55416

------------------------------------------------------------------------------

The estimated parameter for each spline sp_1 to sp_6 is the
conditional mean of mpg (in miles per gallon) under the spline model,
assuming that weight is equal to the corresponding reference point.
However. . .
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Listing of the conditional means using parmest
. . .we can present these estimates and confidence limits more
informatively using the SSC package parmest, as follows:

. parmest, label list(parm label estimate min* max*, sepa(0))
> format(estimate min* max* %8.2f);

+---------------------------------------------------+
| parm label estimate min95 max95 |
|---------------------------------------------------|

1. | sp_1 Spline at 1,760 30.43 26.69 34.17 |
2. | sp_2 Spline at 2,376 24.96 23.37 26.55 |
3. | sp_3 Spline at 2,992 20.27 18.63 21.91 |
4. | sp_4 Spline at 3,608 17.54 16.00 19.08 |
5. | sp_5 Spline at 4,224 15.58 12.76 18.40 |
6. | sp_6 Spline at 4,840 11.80 6.05 17.55 |

+---------------------------------------------------+

The label and list() options allow us to see, instantly, which
conditional mean (expressed in miles per gallon) belongs to each
value of weight (expressed in US or Imperial pounds). And the
format() option formats these parameters sensibly.
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Useful features of the reference splines in a basis

I Any spline of the specified degree, with the calculated
regularly–spaced knots, is equal to a linear combination of the
reference splines in the basis.

I (So, predicted values of the spline at non–reference points are
equal to linear combinations of the values of the spline at the
reference points.)

I In particular, the unit vector is a spline, whose co–ordinates in
the reference splines are all 1.

I (In other words, the reference splines sum to 1.)
I And each reference spline is equal to 1 at its own reference point,

and to 0 at all other reference points.

Sensible parameters for polynomials and other splines Frame 11 of 24



Useful features of the reference splines in a basis

I Any spline of the specified degree, with the calculated
regularly–spaced knots, is equal to a linear combination of the
reference splines in the basis.

I (So, predicted values of the spline at non–reference points are
equal to linear combinations of the values of the spline at the
reference points.)

I In particular, the unit vector is a spline, whose co–ordinates in
the reference splines are all 1.

I (In other words, the reference splines sum to 1.)
I And each reference spline is equal to 1 at its own reference point,

and to 0 at all other reference points.

Sensible parameters for polynomials and other splines Frame 11 of 24



Useful features of the reference splines in a basis

I Any spline of the specified degree, with the calculated
regularly–spaced knots, is equal to a linear combination of the
reference splines in the basis.

I (So, predicted values of the spline at non–reference points are
equal to linear combinations of the values of the spline at the
reference points.)

I In particular, the unit vector is a spline, whose co–ordinates in
the reference splines are all 1.

I (In other words, the reference splines sum to 1.)
I And each reference spline is equal to 1 at its own reference point,

and to 0 at all other reference points.

Sensible parameters for polynomials and other splines Frame 11 of 24



Useful features of the reference splines in a basis

I Any spline of the specified degree, with the calculated
regularly–spaced knots, is equal to a linear combination of the
reference splines in the basis.

I (So, predicted values of the spline at non–reference points are
equal to linear combinations of the values of the spline at the
reference points.)

I In particular, the unit vector is a spline, whose co–ordinates in
the reference splines are all 1.

I (In other words, the reference splines sum to 1.)
I And each reference spline is equal to 1 at its own reference point,

and to 0 at all other reference points.

Sensible parameters for polynomials and other splines Frame 11 of 24



Useful features of the reference splines in a basis

I Any spline of the specified degree, with the calculated
regularly–spaced knots, is equal to a linear combination of the
reference splines in the basis.

I (So, predicted values of the spline at non–reference points are
equal to linear combinations of the values of the spline at the
reference points.)

I In particular, the unit vector is a spline, whose co–ordinates in
the reference splines are all 1.

I (In other words, the reference splines sum to 1.)
I And each reference spline is equal to 1 at its own reference point,

and to 0 at all other reference points.

Sensible parameters for polynomials and other splines Frame 11 of 24



Useful features of the reference splines in a basis

I Any spline of the specified degree, with the calculated
regularly–spaced knots, is equal to a linear combination of the
reference splines in the basis.

I (So, predicted values of the spline at non–reference points are
equal to linear combinations of the values of the spline at the
reference points.)

I In particular, the unit vector is a spline, whose co–ordinates in
the reference splines are all 1.

I (In other words, the reference splines sum to 1.)
I And each reference spline is equal to 1 at its own reference point,

and to 0 at all other reference points.

Sensible parameters for polynomials and other splines Frame 11 of 24



Reference splines of degree 0 with respect to weight
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These splines are set membership functions (or dummies) for
half–open intervals, beginning at a reference point (labelled on the
X–axis), and ending “just before” the next reference point.
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Reference splines of degree 1 with respect to weight
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These splines are fuzzy–set membership functions[1], indicating
membership (on a scale from 0 to 1) of fuzzy intervals, each centered
at a reference point, and extending (in a fuzzy way) from the previous
reference point to the next reference point.
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Reference splines of degree 2 with respect to weight
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These splines are curved and complicated, and less localized than the
previous reference splines. However, each spline is still 1 at its own
reference point, and 0 at all other reference points.
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Reference splines of degree 3 with respect to weight

−.75
−.5

−.25
0

.25
.5

.75
1

1.25

−.75
−.5

−.25
0

.25
.5

.75
1

1.25

1,760

2,376

2,992

3,608

4,224

4,840

1,760

2,376

2,992

3,608

4,224

4,840

1,760

2,376

2,992

3,608

4,224

4,840
Spline at 1,760 Spline at 2,376 Spline at 2,992

Spline at 3,608 Spline at 4,224 Spline at 4,840

C
ub

ic
 r

ef
er

en
ce

 s
pl

in
e 

va
lu

e

Weight (lbs.)
Graphs by Reference spline

These splines are even more curved and complicated, and even less
localized. However, we still see that each spline is 1 at its own
reference point, and 0 at all other reference points.
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So what is useful about these features?

I These features imply that, if we start with a reference–spline
basis, exclude the reference spline for a base reference point, and
include the unit vector, then the resulting set of splines is also a
basis of the same spline space.

I The parameter corresponding to the unit vector is equal to the
value of the spline at the base reference point.

I And the parameter corresponding to any other reference spline is
the difference between the value of the spline at its reference
point and the value of the spline at the base reference point.

I flexcurv and frencurv have an option omit(#) for Stata
Version 10 users, causing a base reference spline to be dropped.

I They also have an option base(#) for Stata Version 11 or 12
users, causing the base reference spline to be set to zero.

I Either way, the generated splines can be input to an estimation
command, without the noconst option.
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Example: Cubic spline of mpg with respect to weight (again)

We will now fit the model fitted before, with a revised
parameterization. We use flexcurv, with the option
base(1760), to input the list of 6 reference points and generate
another basis of 6 cubic reference splines, which we then describe:

. flexcurv, xvar(weight) refpts(1760(616)4840) power(3)
> generate(esp_) base(1760);

. describe esp_*;

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------------------------------------------------------------
esp_1 byte %8.4f Spline at 1,760
esp_2 float %8.4f Spline at 2,376
esp_3 float %8.4f Spline at 2,992
esp_4 float %8.4f Spline at 3,608
esp_5 float %8.4f Spline at 4,224
esp_6 float %8.4f Spline at 4,840

Note that the reference spline esp_1, corresponding to the base
reference point 1,760, has storage type byte. This is because it has
been set to zero and compressed.
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Regression of mpg with respect to the revised basis

We then use regress, this time without the noconst option, to fit
a linear regression model of mpg with respect to the revised reference
splines:

. regress mpg esp_*, nohead;
note: esp_1 omitted because of collinearity
------------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

esp_1 | 0 (omitted)
esp_2 | -5.470931 2.302385 -2.38 0.020 -10.06527 -.8765925
esp_3 | -10.16026 1.886437 -5.39 0.000 -13.92459 -6.395937
esp_4 | -12.88711 2.10172 -6.13 0.000 -17.08103 -8.693193
esp_5 | -14.84924 2.272157 -6.54 0.000 -19.38325 -10.31522
esp_6 | -18.62611 3.486792 -5.34 0.000 -25.58389 -11.66832
_cons | 30.42891 1.875042 16.23 0.000 26.68733 34.1705

------------------------------------------------------------------------------

This time, the parameter _cons is the value of the spline at the base
reference weight of 1,760, the parameter esp_1 is omitted because it
corresponds to the base reference weight, and the other spline
parameters are effects on mileage of other reference weights.
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Listing of the base value and weight effects using parmest

We then use parmest again, this time with the option omit, to list
the parameters informatively, this time with confidence limits and
P–values:

. parmest, label omit list(parm label omit estimate min* max* p, sepa(0))
> format(estimate min* max* %8.2f p %-8.2g);

+-------------------------------------------------------------------------+
| parm label omit estimate min95 max95 p |
|-------------------------------------------------------------------------|

1. | o.esp_1 Spline at 1,760 1 0.00 0.00 0.00 . |
2. | esp_2 Spline at 2,376 0 -5.47 -10.07 -0.88 .02 |
3. | esp_3 Spline at 2,992 0 -10.16 -13.92 -6.40 9.7e-07 |
4. | esp_4 Spline at 3,608 0 -12.89 -17.08 -8.69 5.0e-08 |
5. | esp_5 Spline at 4,224 0 -14.85 -19.38 -10.32 9.6e-09 |
6. | esp_6 Spline at 4,840 0 -18.63 -25.58 -11.67 1.2e-06 |
7. | _cons Constant 0 30.43 26.69 34.17 4.4e-25 |

+-------------------------------------------------------------------------+

We see that the parameter _cons is the constant term, the omitted
effect of the base weight 1,760 is 0 with both confidence limits 0, and
the effects of the other weights on mileage are clearly significantly
negative.
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Effects of weight on mpg in the auto data

I The Y–axis displays the 6
reference levels of
weight.

I The X–axis displays the
effects of each weight on
mileage, compared to the
base weight of 1,760
pounds.

I So, once again, the
reference splines model a
continuous factor, just as
dummy variables model
discrete factors.
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pounds.

I So, once again, the
reference splines model a
continuous factor, just as
dummy variables model
discrete factors.
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Product bases for multi–factor models
I In models with multiple discrete factors, we model the

conditional Y–variable means or effects of combinations of
factor values by generating product bases.

I Dummy–variable bases (complete or incomplete) are generated
for discrete factors by xi: in Stata Version 10, and (in virtual
form) by factor varlists in Stata Versions 11 and 12.

I To combine discrete factors, we use the # operator in Stata 11 or
12 factor varlists, or the * operator in xi: varlists.

I Both of these work by generating product bases of binary
dummy variables (possibly virtual), containing pairwise products
of the dummy variables of the input bases.

I Similarly, given 2 or more reference–spline bases (complete or
incomplete) for continuous factors, we can also generate product
bases, with the same desirable features.

I The parameters corresponding to the product variables can be
conditional means for factor–value combinations, subset–specific
factor effects, or even “factor interaction effects”.
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flexcurv’s team–mates: prodvars and fvprevar

I The prodvars package, downloadable from SSC, inputs 2 lists
of input variables and generates a list of output variables,
containing all pairwise products of the input variables.

I These output variables are named (and labelled) using rules
specified by the user.

I The fvprevar package, downloadable from SSC, is a modified
version of fvrevar.

I fvprevar inputs a Stata Version 11 or 12 factor varlist, and
expands it, creating permanent output dummy variables instead
of temporary output dummy variables.

I These permanent output dummy variables can be input to
prodvars, together with reference splines, allowing the user to
combine discrete and continuous factors at will.
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Example: Effects of weight on mpg in odd– and even–numbered models

I These confidence
intervals are from an
equal–variance regression
model, combining weight
as a continuous factor
with oddness as a discrete
factor.

I They were produced
using flexcurv,
fvprevar and
prodvars.

I (We also used the SSC
packages parmest,
descsave, fvregen,
factext and eclplot
to make the plot.)
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This presentation, and the do–files producing the examples, can be
downloaded from the conference website at
http://ideas.repec.org/s/boc/usug11.html

The packages used in this presentation can be downloaded from SSC,
using the ssc command.
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