rego

Stata module for decomposing goodness of fit according to Shapley and Owen values

Frank Huetner and Marco Sunder
Department of Economics
University of Leipzig, Germany

Motivation

- Challenges in interpreting regression results by the analyst (the quick and dirty way)
- Sign econometrics
- Confusion of statistical significance and economic significance
- Interaction terms
- Challenges to readers
- Units of measurement
- "Omitted coefficients"

Decompose

Motivation

- Imagine regressor variables as "players"
- Cooperative game theory: games with transferable utility
- Regressors may form coalition - how to distribute the gains from cooperation?
- Shapley (1953) and Owen (1977) Values as means to decompose goodness of fit
- Axioms under which these values are unique solutions
- "hierarchical partitioning"
(Lindeman et al. 1980, Chevan \& Sutherland 1991)
- Previous implementations:

Stata: shapley (Kolenikov 2000)
R: relaimpo package (Grömping 2006)

Illustrative calculation of the Shapley Value

- Assume the "full model" is...

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\varepsilon
$$

log wage

intelligence schooling experience

Marginal contributions (MC)

0.72	0.30		
0.3	0.18	0.00	
0.72	0.30	0.12Δ	0.00
0.72			
0.54	0.54	0.18	0.00
0.72	0.54	0.24	0.00
0.72	0.4 .8	0.12Δ	0.00
0.72	0.4 .8	0.24	0.00

$\operatorname{Sh}\left(x_{j}\right)=\frac{1}{k!}$
 all permutations

$\operatorname{sh}(\leftrightarrows)=\frac{1}{6} \cdot(0.12+0.12+0.18+0.18+0.12+0.24)=0.16$
$\operatorname{Sh}(\mathrm{C})=\frac{1}{6} \cdot(0.42+0.42+0.36+0.24+0.36+0.24)=0.34$
$\operatorname{Sh}($ e) $)=\frac{1}{6} \cdot(0.18+0.18+0.18+0.30+0.24+0.24)=0.22$

$$
\Sigma=0.72
$$

Axioms

1) Efficiency

GOF of full model is decomposed among the regressors

2) Monotonicity

Increase in R^{2} must not decrease the value

3) Equal treatment

Perfect substitutes (in terms of GOF) receive the same value

The Shapley Value is the only value that satisfies these properties (Young 1985).

A priori grouped regressors

- Analyst may believe that some regressor variables belong łogether, e.g.: polynomial terms, region dummies
- Regressor variables are partitioned: $\mathcal{G}=\left\{G_{1}, \ldots, G_{\ell}, \ldots, G_{\gamma}\right\}$
- When thinking about marginal contributions of variables from G_{ℓ}, variables of $G_{q \neq \ell}$ must be completely absent or present
- This limits the set of admissible model permutations Owen Value
- E.g.: "nature",

4 permutations respect \mathcal{G}

0.72	0.30	0.18	0.00
0.72	0.30	0.12	0.00
0.72	0.54	0.18	0.00
0.72	0.54	0.24	0.00
0.72	0.48	0.12	0.00
0.72	0.48	0.24	0.00
$O w(C)=0.33$	$O w(\mathbb{B})=0.165$	$O w(\Delta)=0.225$	

Axioms

1) Efficiency*

2) Monołonicity*

3) Equal treatment of players
4) Equal treatment of groups

The Owen Value is the only value that satisfies these properties (Khmelnitskaya and Yanovskaya 2007).

Stata implementation

- With grouping, "large" models become possible
- User decides for which groups to calculate Owen values
- R2 calculated from covariance structure of the data
- Syntax uses "\" to indicate group boundaries in varlist
- Computation in Mata
- Bootstrapping option

help rego

Title

rego - Linear regression with Shapley and Owen decomposition of R-squared (for Stata 9+)

Syntax

rego varlist [if] [in] [, options]

options	description
Main	
detail	calculate Owen values for individual variables vce(vcetype)
noperc	determine what standard errors are computed: ols, robust,
donce not display Owen/Shapley values as percentages of overall R-squared	
Bootstrap bsreps	perform calculations even if it would take a lot of time
level	number of bootstrap replications confidence level, in \%

xi (Stata 9+) and time series operators (Stata 11+) may be used, but factor variables are not supported.

Description

rego uses results from regress and decomposes the share of explained variance (measured by R-squared) into contributions by indvidual regressor variables or groups of regressor variables. The former case is calculated as Owen value, the latter as Shapley value (for groups). In the special case that each group consists of only one regressor, both quantities coincide. If not suppressed by the noperc option, the contributions are displayed as percentages of overall R-squared.

Remarks

Groups of regressors are specified with the help of the backslash ("\") symbol. It must be placed in the varlist after the last variable of each group. If no groups are defined, rego assumes that each regressor belongs to a group of its own and calculates the "traditional" Shapley value.

Wage regression: German male employees

OLS regression results with decomposition of R^{2} (in \%)

			R^{2} decomposition (\%)	
Group	Regressor	Coef.	Owen	Group
1	SCT	0.789^{*}	3.0	33.2
	SCT \times EDUC	-0.048^{*}	8.3	
	EDUC	$0.103^{* * *}$	21.9	
2	EXPER	$0.025^{* * *}$	7.0	11.0
	$\left(\right.$ EXPER) ${ }^{2} / 100$	$-0.041^{* * *}$	4.0	
3	TENURE	$0.017^{* * *}$	9.3	14.3
	(TENURE) $^{2} / 100$	$-0.029^{* *}$	5.0	
4	MARRIED	$0.084^{* * *}$	5.0	5.0

5 Firm size (3 dummies) ${ }^{* * *} 14.7$
$6 \quad$ Industry
$(6 \text { dummies })^{* * *}$
5.5

7 Region
(14 dummies) $^{* * *}$

Remark: */**/*** denotes statistical significance at the 10\% / 5\% / 1\% level for individual variables (t-test) or groups of dummy variables (F-test), based on the heteroscedasticity-robust covariance matrix.

Wage regression: German male employees

FIG 1. Decomposition results for groups, with 90% bootstrap confidence intervals, based on 5000 bootstrap replications.

Wage regression: German male employees

Fig 2. Owen value decomposition results for 'human capital' variables, with 90% bootstrap confidence intervals, based on 5000 bootstrap replications.

Limits

- Only OLS with R^{2} decomposition at this time
- Does not yet accept factor variables or weights

Possible extensions?

- Decomposition of other measures (e.g., AIC)
- More levels of aggregation
- Essential regressors / fixed effects model (econ)

Thank youb

www.uni-leipzig.de/~rego

Axiomatic arguments for decomposing goodness of fit according to Shapley and Owen values

```
                Trank Heettuer and Marcos Sunder
```



```
        *)
```



```
    manmermionmus, व
    Nusioct lum=30%
```

1. Tetradartion

Huettner \& Sunder (2012)
Electronic Journal of Statistics

