Influence functions at work

Philippe Van Kerm

Luxembourg Institute of Socio-Economic Research philippe.vankerm@liser.lu

2015 London Stata Users Group meeting

September 10-11 2015, Cass Business School, London

Introduction

- Illustration of practical uses of 'influence function' estimators with Stata
 - Study structure of summary statistics (identification of 'influential observations')
 - 2. Variance estimation
 - 3. 'RIF regression'
- Application to income distribution analysis

Definition

Let v(F) be a statistic of interest (a functional) calculated in distribution F (the mean, a percentile, the Gini coefficient of inequality, etc.) The *influence function* of v is a function of y and F and is defined as (Hampel, 1974)

$$\operatorname{IF}(y; v, F) = \lim_{\epsilon \downarrow 0} \frac{v((1-\epsilon)F + \epsilon \Delta_y) - v(F)}{\epsilon}$$

The IF captures the effect on v(F) of an infinitesimal 'contamination' of F at point mass y.

(Note the expected value of the IF is zero: $\int IF(y, v(F))dF(y) = 0$)

Definition (ctd.)

Expressions for IF(y; v, F) exist (or can be derived) for a wide range of statistics v^1 :

... simple (linear) statistics, e.g., the mean

$$\operatorname{IF}(y; \mu, F) = y - \mu(F)$$

... and more complex (non linear) statistics, e.g., a quantile

$$\operatorname{IF}(y; \mathcal{Q}_{ heta}, \mathcal{F}) = rac{-1}{f(\mathcal{Q}_{ heta}(\mathcal{F}))}(I(y \leq \mathcal{Q}_{ heta}(\mathcal{F})) - heta)$$

¹See e.g., Essama-Nssah and Lambert (2012) for a catalogue of IFs relevant to income distribution analysis

Practical use 1

Practical use 1:

- visualising the 'structure' of a (possibly complex) index
- comparison of indices (think of the many inequality measures!)
- identification of influential observations (and robustness of the index)

Income inequality indicators: the Atkinson index

The Atkinson inequality index (Atkinson, 1970):

$$A(\epsilon) = 1 - \frac{1}{\mu} \left(\frac{1}{N} \sum_{i=1}^{N} y_i^{1-\epsilon} \right)^{\frac{1}{1-\epsilon}}$$

for $\epsilon \geq 0$

The higher ϵ , the higher 'inequality aversion'... Can we visualise that?

Income inequality indicators: the Atkinson index IF

(annual household income data for Luxembourg 2012)

Income inequality indicators: the Atkinson index IF

(annual household income data for Luxembourg 2012)

Income inequality indicators: the Atkinson index IF

(annual household income data for Luxembourg 2012)

Income inequality: the Quintile Share Ratio

How does it compare with the Quintile (Group) Share Ratio?

An aside: comparison with delete-one jackknife influence measure

Not the same when observations are weighted!

Practical use 2

Practical use 2:

- estimation of the sampling variance of the index
- asymptotic approximation that works with complex non-linear statistics
- valid with complex survey design!
- (... it is all in the Stata manuals already)

Variance estimation

An asymptotic approximation of the variance of v is given by (Hampel, 1974)

$$V(v,F) \approx \int \mathrm{IF}(y;v,F)^2 dF(y)$$

Practically boils down to estimation of a total (Deville, 1999):

$$V(\hat{v}, F) \approx V\left(\sum_{i=1}^{N} w_i \mathrm{IF}(y_i; v, \hat{F})\right)$$

... and formula well-known for the variance of a total even with complex survey design: implemented in Stata!

Variance estimation

Code template

```
svyset ...
generate rif= ... // note: point estimate is added to
IF
svy: mean rif
Silly example with the mean:
svyset [pw=W] , ...
su y [aw=W]
gen rifmean = r(mean) + (y - r(mean))
    mean rifmean
svy:
svy: mean y // yes, it works!
```

-Variance estimation

Variance estimation

Built in some user-written commands

(runnir	. svy : inequaly nivie , atkinson(0.5 1 2) s80s20 (running inequaly on estimation sample)										
Survey data analysis											
Number of strata = 4 Number of PSUs = 5,988					Number of Populatic Design df F(0, Prob > F	obs on size 5984)	=	5,988 515,407.14 5,984 - -			
	 nivie	Coef.	Linearized Std. Err.	t	P> t	[95% Co	onf.	Interval]			
atkp5	_cons	.0621767	.0039672	15.67	0.000	.054399	95	.069954			
atk1	_cons	.1174055	.0061389	19.12	0.000	.10537	11	. 12944			
atk2	_cons	.2146223	.0083138	25.82	0.000	. 198324	42	.2309204			
s80s20	_cons	3.953448	.1226658	32.23	0.000	3.71297	78	4.193917			

Ո

Practical use 3

Practical use 3:

- 'Recentered IF regression' (Firpo et al., 2007, 2009)
- evaluate impact of covariates on distribution statistics

RIF regression

The effect of interest

For example, how do foreign households affect v(F)?

$$F(y) = \sum_{x \in \Omega_X} s_x F_x(y)$$

Consider an infinitesimal variation: swap native for foreign workers

$$G_r^{F,t,k}(y) = (s_k+t) F_k(y) + (s_r-t) F_r(y) + \sum_{x \in \Omega_X \setminus \{k,r\}} s_x F_x(y).$$

(Choe and Van Kerm, 2014) What is the impact of this swap on the statistic of interest?

Recentered influence function estimator

Firpo et al. (2009) show that effect of interest is given by:

$$\mathbf{E}[\mathbf{RIF}(y; v, F)|X = k] - \mathbf{E}[\mathbf{RIF}(y; v, F)|X = r]$$

where $\operatorname{RIF}(y; v, F) = v(F) + \operatorname{IF}(y; v, F)$

Regression-based estimator, β in :

$$E[RIF(y; v, F)|X = x] = \alpha + x\beta$$

(Note: N. Fortin provides the Stata package rifreg for regressions on quantile, variance and Gini functionals (http://faculty.arts.ubc.ca/nfortin/datahead.html).)

Interpretation of RIF regression coefficients

- ► The RIF at y gives the influence on v(F) of an infinitesimal increase in the density of the data at y
- Regression coefficients reveal how much the average influence of observations vary with X (holding other covariates constant)
- ► It also reveals how much v(F) would respond to a change in the distribution of X in the population holding distribution of other covariates constant
 - ▶ linear approximation valid only for *marginal* changes in X!

Illustrative example 1

Data and problem

- Panel Study Liewen zu Letzebuerg 2011 (official source for poverty and inequality statistics in Luxembourg)
- Permanent panel (started in 2003) gradually converted into rotating panel from 2010:
 - new samples ('rotation groups') now added for four years (so dataset for 2010, 2011, 2012 is mix of old and new samples)
 - Concern about how much 'new samples' differ from 'old sample' (due, e.g., to attrition (and slightly different sampling frame))
 - Impact on trends in inequality and poverty indicators? Break in series when 'old sample' abandoned?

 \Rightarrow Use RIF regression to check if rotation group impacts on inequality \Box

Illustrative example 1

Code

```
inequaly nivie , atkinson(0.5 1 2)
svy:
predict rif* , rif // predict after -inequaly- gives (R)IF
    regress rif1 ib9.(rot)
svy:
svy: regress rif2 ib9.(rot)
svy: regress rif3 ib9.(rot)
svy: inequaly nivie , s80s20
predict rifs80s20 . rif
    regress rifs80s20 ib9.(rot)
svy:
svy: newpoverty nivie , fracmedian(.6)
predict rifh , rif
     regress rifh ib9.(rot)
svy:
```

Results: Atkinson(0.5)

```
svy: regress rif1 ib9.(rot)
(running regress on estimation sample)
Survey: Linear regression
Number of strata
                                             Number of obs
                                                                    5,988
                           4
                       5,988
Number of PSUs =
                                             Population size = 515,407.14
                                             Design df
                                                                5,984
                                                             =
                                             F( 3,
                                                      5982)
                                                                    2.96
                                                             =
                                             Prob > F
                                                                   0.0312
                                                             =
                                             R-squared
                                                                   0.0023
                                                             =
                         Linearized
       rif1 |
                 Coef. Std. Err.
                                    t P>[t] [95% Conf. Interval]
        rot |
               . 0157444
                        .0186107
                                     0.85
                                             0.398
                                                    - 0207392
                                                                  . 052228
         1
         2
               -.0048659
                        .0043721
                                     -1.11
                                             0.266
                                                     - 0134369
                                                                 . 003705
         3
                .0111881
                         0059868
                                     1.87
                                             0.062
                                                     -.0005481
                                                                  .0229243
      cons
                .0575857
                         0033763
                                     17.06
                                             0.000
                                                      . 05 09669
                                                                 . 0642 044
```

Results: Atkinson(2)

-	svy: regress rif3 ib9.(rot)	
(running	regress on estimation sample)	

Survey: Linear regression

Number Number	of strata of PSUs	= = 5	4 ,988		Number Populat: Design F(3, Prob > I R-squar	of obs ion size df 5982) F ed	= !	5,988 515,407.14 5,984 2.04 0.1056 0.0023
	 rif3	Coef.	Linearized Std. Err.	t	P> t	[95%	Conf.	Interval]
	rot 1 2 3	.0246292 006993 .0339101	.0347917 .0135387 .0171911	0.71 -0.52 1.97	0.479 0.606 0.049	0435 0335 .0002	751 338 094	.0928336 .0195478 .0676108
	_cons	.2036115	.009367	21.74	0.000	.1852	488	.2219741

Results: S80/S20

. svy: (running regre	regress rifs ss on estimat	580520 ib9.(1 cion sample)	rot)				
Survey: Linear	regression						
Number of stra Number of PSUs	ta = = 5	4 ,988		Number (Populati Design (F(3, Prob > F R-square	of obs ion size If 5982) : ed	= = = =	5,988 515,407.14 5,984 2.44 0.0622 0.0027
rifs80s20	Coef.	Linearized Std. Err.	t	P> t	[95% Ca	onf.	Interval]
rot 1 2 3	.4599947 0630366 .5306184	.5221966 .2020467 .2375919	0.88 -0.31 2.23	0.378 0.755 0.026	563698 459120 .064852	39 99 26	1.483688 .3330477 .9963842
_cons	3.753404	.1405622	26.70	0.000	3.47785	51	4.028956

Results: Poverty rate

. svy: regress rifh ib9.(rot) (running regress on estimation sample)

Survey: Linear regression

Number Number	of str of PSU	ata s	=	4 5,988		Number o Populati Design d	of obs on size of	=	5,988 515,407.14 5,984
						- F(3, - Prob > F	598Z)	=	0.2659
						R-square	d	=	0.0020
	rifh	 	Coef.	Linearized Std. Err.		P> t	[95%	conf.	Interval]
	rot	+ I							
	1	j	3146267	.0233548	0.63	0.531	0311	571	.0604105
	2	j	3069663	.0211085	0.33	0.741	034	414	.0483466
	3	į.	. 043 081	.0221201	1.95	0.052	0002	823	.0864443
	_cons	¦ .1	1342025	.0129755	10.34	0.000	.1087	658	.1596393

-RIF regression

Illustrative example 2

Effect of foreign households on inequality and poverty?

- Effect of a marginal increase in share of foreign-headed households on indicators
 - assuming no change in income structure otherwise
- Condition on age of foreign households

RIF regression

Results: Atkinson(0.5)

. svy: regress rif1 ib9.(rot) i.(chme11) (running regress on estimation sample)

Survey: Linear regression

Number of strat Number of PSUs	ca = 5,	4 987		Number o Populati Design d F(6, Prob > F R-square	f obs on size f 5978) d	= = 5 = = =	5,987 15,119.97 5,983 7.42 0.0000 0.0099
rif1	Coef.	Linearized Std. Err.	t	P> t	[95%	Conf.	Interval]
rot	⊧ 						
1	.0142397	.0183501	0.78	0.438	0217	331	.0502126
2	0062364	.0043078	-1.45	0.148	0146	812	.0022083
3	.0080582	.0059128	1.36	0.173	003	533	.0196495
chme11							
Portuqais	.0135398	.0039052	3.47	0.001	.0058	841	.0211955
Autres UE-15	.0262902	.0178432	1.47	0.141	008	689	.0612694
Non UE-15	.0418941	.0086454	4.85	0.000	.0249	461	0588421
_cons	.0476424	.0050467	9.44	0.000	.0377	491	.0575358

RIF regression

Results: Atkinson(0.5)

. svy: regress rif1 ib9.(rot) i.(chme11) ib6.(chme09) (running regress on estimation sample)

Survey: Linear regression

Number of strata Number of PSUs	a = = 5,1	4 987		Number o Populati Design d F(10, Prob > F R-square	f obs on size f 5974) d	= 5 = = = =	5,987 15,119.97 5,983 5.90 0.0000 0.0108
I		Linearized					
rif1	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
rot I							
11	.0141385	.0178513	0.79	0.428	02 08	1565	.0491335
2	0061202	0043087	-1.42	0.156	0145	667	0023264
3	.0082485	.0059444	1.39	0.165	0031	1047	.0199016
chme11							
Portugais	.0159073	.0039841	3.99	0.000	. 008	8097	.0237177
Autres UE-15	.0269482	.0181449	1.49	0.138	0086	6224	.0625188
Non UE-15	.0442646	.0085935	5.15	0.000	.0274	182	.061111
chme 09							
[16-24]	.0032088	.0138918	0.23	0.817	0240	3242	.0304418
[25-34]	0125041	.0078015	-1.60	0.109	0277	978	.0027897
[35-49]	0050532	.007715	-0.65	0.512	- 0201	773	0100708
[50-64]	.0021521	.0129697	0.17	0.868	0232	2733	.0275774
_cons	.0499364	.0094564	5.28	0.000	.0313	985	.0684744

JU

Results: Atkinson(2)

. svy: regress rif3 ib9.(rot) i.(chme11) ib6.(chme09) (running regress on estimation sample)

Survey: Linear regression

Number of strat	a =	4		Number of	Fobs	-	5,987
Number of PSUs	= 5,	987		Populatio	on size	= 5	15,119.97
				Design df	F	=	5,983
				F(10,	5974)	=	2.68
				Prob > F		=	0.0029
				R-squared	1	=	0.0173
		Linearized					
rif3	Coef.	Std. Err.	t	P>[t]	[95%	Conf.	Interval]
rot							
1	.0197437	.033453	0.59	0.555	0458	3363	.0853236
2	0112723	0133852	-0.84	0.400	0375	5122	0149676
3	.0245481	.0159634	1.54	0.124	0067	7459	.0558422
chme11							
Portugais	.0076757	.0114413	0.67	0.502	0147	7533	0301047
Autres UE-15	.0634587	.0338566	1.87	0.061	0029	9124	.1298298
Non UE-15	.1332594	.0373124	3.57	0.000	. 06 01	1136	.2064052
chme 09							
[16-24]	.046107	.0539939	0.85	0.393	0597	7405	.1519544
[25-34]	0031152	0206771	-0.15	0.880	0436	5499	.0374194
[35-49]	.0021401	.0159684	0.13	0.893	- 029	1637	.0334439
[50-64]	.0165315	.0241836	0.68	0.494	03 08	3771	.06394
_cons	.1764981	.0180461	9.78	0.000	.1411	1213	.2118749

Results: Poverty rate

. svy: regress rifh ib9.(rot) i.(chme11) ib6.(chme09) (running regress on estimation sample)

Survey: Linear regression

Number of strat	a =	4		Number o	f obs	-	5,987
Number of PSUs	= 5,9	987		Populati	on size	= 5	15,119.97
				Design d	f	=	5,983
				F(10,	5974)	=	2.89
				Prob > F		=	0.0013
				R-square	d	=	0.0142
		Linearized					
rifh	Coef.	Std. Err.	t	P>[t]	[95%	Conf.	Interval]
rot							
1	.0114206	0234601	0.49	0.626	034	5697	.0574109
2	.0040279	0209573	0.19	0.848	037	7056	.0451117
3	.0380812	.0219422	1.74	0.083	0049	9334	.0810959
chme11							
Portugais	0770121	.0238951	-3.22	0.001	1238	3552	030169
Autres UE-15	.0329958	.019137	1.72	0.085	004	5195	.0705112
Non UE-15	.0465431	.0511668	0.91	0.363	0537	624	.1468486
chme 09							
[16-24]	.0411687	0877057	0.47	0.639	130	3766	.2131034
[25-34]	.0480566	.0257379	1.87	0.062	002	2399	.0985123
[35-49]	.0379237	0192831	1.97	0.049	.000	1218	.0757256
[50-64]	.0562376	.0190103	2.96	0.003	.0189	97.07	.0935046
_cons	.1004148	.0159395	6.30	0.000	.069	1676	.131662

RIF regression

Results: Poverty rate (fixed poverty line)

. svy: regress rifhbis1 ib9.(rot) i.(chme11) ib6.(chme09) (running regress on estimation sample)

Survey: Linear regression

Number of strata = 4			Number of	obs	-	5,987	
Number of PSUs	= 5,9	987		Populatio	n size	= 5	15,119.97
				Design df		=	5,983
				F(10,	5974)	=	16.31
				Prob > F		=	0.0000
				R-squared		=	0.1074
I		Linearized					
rifhbis1	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
rot							
1	.0178995	.0213374	0.84	0.402	0239	295	.0597284
2	.0059625	0192948	0.31	0.757	0318	3624	0437873
3	.038296	.0218492	1.75	0.080	0049	5364	.0811283
chme11							
Portugais	2040203	.0231579	8.81	0.000	.1586	5225	.2494181
Autres UE-15	.052723	.0189874	2.78	0.006	.0155	5009	.0899452
Non UE-15	.3275548	.0547087	5.99	0.000	.2203	3059	.4348036
chme 09							
[16-24]	.1271475	.0982018	1.29	0.195	0653	3634	.3196585
[25-34]	.047582	.0231179	2.06	0.040	.0022	2626	.0929015
[35-49]	.0561238	.015962	3.52	0.000	.0248	3325	.0874151
[50-64]	.0382346	.014837	2.58	0.010	.009	1487	.0673204
_cons	.0181208	.0122119	1.48	0.138	0058	3189	.0420606

Μ

- Atkinson, A. B. (1970), 'On the measurement of inequality', Journal of Economic Theory 2(3), 244–263.
- Choe, C. and Van Kerm, P. (2014), Foreign workers and the wage distribution: Where do they fit in?, CEPS/INSTEAD Working Paper 2014-02, Luxembourg Institute of Socio-Economic Research, Esch-sur-Alzette, Luxembourg.
- Deville, J.-C. (1999), 'Variance estimation for complex statistics and estimators: linearization and residual techniques', *Survey Methodology* **25**, 193–204.

Essama-Nssah, B. and Lambert, P. J. (2012), Influence functions for policy impact analysis, *in* J. A. Bishop and R. Salas, eds, 'Inequality, Mobility and Segregation: Essays in Honor of Jacques Silber', Vol. 20 of *Research on Economic Inequality*, Emerald Group Publishing, chapter 6, pp. 135–159.

- Firpo, S., Fortin, N. M. and Lemieux, T. (2007), Unconditional quantile regressions, Technical Working Paper 339, National Bureau of Economic Research, Cambridge MA, USA.
- Firpo, S., Fortin, N. M. and Lemieux, T. (2009), 'Unconditional quantile regressions', *Econometrica* 77(3), 953–973.
- Hampel, F. R. (1974), 'The influence curve and its role in robust estimation', *Journal of the American Statistical Association* 69(346), pp. 383–393.

Support from the Luxembourg 'Fonds National de la Recherche' is gratefully acknowledged (project 'Tax-benefit systems, employment structures and cross-country differences in income inequality in Europe: a micro-simulation approach–SIMDECO').