

stpm2cr: A Stata module for direct likelihood inference on the cause-specific cumulative incidence function within the flexible parametric modelling framework

Sarwar Islam Mozumder¹, Mark J Rutherford¹

& Paul C Lambert^{1, 2}

¹ Department of Health Sciences, University of Leicester, Leicester, UK

² Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

Introduction ●0	Relationship with the Cause-specific CIF 00	Flexible Parametric Models for the Cause-Specific CIF	Conclusions 0
Multi-s	tate Model		
		Death from Cancer, <i>k</i> = 1	

Introduction	Relationship with the Cause-specific CIF
•o	

Flexible Parametric Models for the Cause-Specific CI

Conclusions

Multi-state Model

Flexible Parametric Models for the Cause-Specific CIF

Conclusions

The Cumulative Incidence Function (CIF)

Cause-specific CIF, $F_k(t)$

$F_k(t) = P(T \leq t, D = k)$

Conclusion

The Cumulative Incidence Function (CIF)

Cause-specific CIF, $F_k(t)$

The probability that a patient will die from cause D = k by time t whilst also being at risk from dying of other causes

- We obtain this by either,
 - Estimating using all cause-specific hazard functions, or
 - Transforming using a direct relationship with the subdistribution hazard functions

Conclusions

The Cumulative Incidence Function (CIF)

Cause-specific CIF, $F_k(t)$

The probability that a patient will die from cause D = k by time t whilst also being at risk from dying of other causes

- We obtain this by either,
 - Estimating using all cause-specific hazard functions, or
 - Transforming using a direct relationship with the subdistribution hazard functions

	Relationship with the Cause-specific CIF ●0	Flexible Parametric Models for the Cause-Specific CIF	Conclusion O
Approa	ch (1)		
Cau	se-specific Hazards, $h_{\nu}^{cs}(t)$		
	$h^{cs}(t) = \lim_{t \to \infty} P(t < t)$	$t: T \leq t + \Delta t, D = k T > t$)	
	$n_k(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t}$	Δt	

Approach (1)

Cause-specific Hazards, $h_k^{cs}(t)$

Instantaneous conditional rate of mortality from cause D = k given that the patient is still alive at time t

Conclusions

Approach (1)

Cause-specific Hazards, $h_k^{cs}(t)$

Instantaneous conditional rate of mortality from cause D = k given that the patient is still alive at time t

Estimating Cause-specific CIF using CSH

$$F_k(t) = \int_0^t S(u) h_k^{cs}(u) du$$

Approach (1)

Cause-specific Hazards, $h_k^{cs}(t)$

Instantaneous conditional rate of mortality from cause D = k given that the patient is still alive at time t

Estimating Cause-specific CIF using CSH

$$F_k(t) = \int_0^t \exp\left[\int_0^s -\sum_{j=1}^K h_j^{cs}(u) du\right] \frac{h_k^{cs}(s)}{ds}$$

	ction Relationship with the Cause-specific CII ○●	F Flexible Parametric Models for the Cause-Specific CIF	Conclusions 0
Арр	roach (2)		
			_
	Subdistribution Hazards, h_k^{sc}	d(t)	
	$h_k^{sd}(t) = \lim_{\Delta t o 0} rac{P(t < T \leq t)}{P(t < T \leq t)}$	$\frac{t + \Delta t, D = k T > t \cup (T \le t \cap cause \neq k)}{\Delta t}$	

Approach (2)

Subdistribution Hazards, $h_k^{sd}(t)$

The instantaneous rate of failure at time t from cause D = kamongst those who have not died, or have died from any of the other causes, where $D \neq k$

Approach (2)

Subdistribution Hazards, $h_k^{sd}(t)$

The instantaneous rate of failure at time t from cause D = kamongst those who have not died, or have died from any of the other causes, where $D \neq k$

Direct Transformation of the Cause-specific CIF

$$F_k(t) = 1 - \exp\left[-\int_0^t h_k^{sd}(u)du
ight]$$

Relationship		Cause-specific	CIF

Flexible Parametric Models for the Cause-Specific CIF ••••••••• Conclusions

Regression Modelling

SDH Regression Model

$$h_k^{sd}(t|\mathbf{x}) = h_{0,k}^{sd}(t) \exp\left[\mathbf{x}_k \boldsymbol{\beta}_k^{sd}\right]$$

- Subdistribution hazard ratio = exp $[\boldsymbol{\beta}_k^{sd}]$
- Association on the effect of a covariate on risk

Conclusions 0

Why Flexible Parametric Survival Models? [Royston and Lambert, 2011]

 Models baseline (log-cumulative) SDH function using restricted cubic splines

Log-Cumulative SDH Flexible Parametric Model

 $\ln(H_k^{sd}(t|\mathbf{x}_{ik})) = s_k(\ln(t)|\gamma_k, \mathbf{m}_{0k}) + \mathbf{x}_{ik}\boldsymbol{\beta}_k$

Why Flexible Parametric Survival Models? [Royston and Lambert, 2011]

• Models baseline (log-cumulative) SDH function using restricted cubic splines

Log-Cumulative SDH Flexible Parametric Model

 $\ln(H_k^{sd}(t|\mathbf{x}_{ik})) = \frac{s_k(\ln(t)|\gamma_k, \mathbf{m}_{0k})}{s_k(\ln(t)|\gamma_k, \mathbf{m}_{0k})} + \frac{s_{ik}\beta_k}{s_k}$

• Easy to include time-dependent effects

Relaxing Assumption of Proportionality

$$\ln(H_k^{sd}(t)) = s_k(\ln(t);\boldsymbol{\gamma}_k,\mathbf{m}_{0k}) + \mathbf{x}_k\boldsymbol{\beta}_k + \sum_{l=1}^E s_k(\ln(t);\boldsymbol{\alpha}_{lk},\mathbf{m}_{lk})\mathbf{x}_{lk}$$

• Can predict time-dependent HRs, absolute differences and more...

Conclusion

The Likelihood Function [Jeong and Fine, 2006]

Direct Parametrisation (competing risks)

$$L = \prod_{i=1}^{n} \left[\prod_{j=1}^{K} \left[(f_j^s(t_i | \mathbf{x}_j))^{\delta_{ij}}
ight] [S(t | \mathbf{x})]^{1 - \sum_{j=1}^{K} \delta_{ij}}
ight]$$

Conclusion

The Likelihood Function [Jeong and Fine, 2006]

Direct Parametrisation (competing risks)

$$L = \prod_{i=1}^{n} \left[\prod_{j=1}^{K} \left[(f_j^{s}(t_i | \mathbf{x}_j))^{\delta_{ij}}
ight] [S(t | \mathbf{x})]^{1 - \sum_{j=1}^{K} \delta_{ij}}
ight]$$

The Likelihood Function [Jeong and Fine, 2006]

Direct Parametrisation (competing risks)

$$L = \prod_{i=1}^{n} \left[\prod_{j=1}^{K} \left[(f_j^s(t_i | \mathbf{x}_j))^{\delta_{ij}} \right] [S(t | \mathbf{x})]^{1 - \sum_{j=1}^{K} \delta_{ij}} \right]$$

CSH Approach

$$L = \prod_{i=1}^{n} \left[\prod_{j=1}^{K} \left[(S(t|\mathbf{x}) h_j^{cs}(t_i|\mathbf{x}_j))^{\delta_{ij}} \right] [S(t|\mathbf{x})]^{1 - \sum_{j=1}^{K} \delta_{ij}} \right]$$

• Estimates covariate effects on the cause-specific CIF rather than the CSH rate

The Likelihood Function [Jeong and Fine, 2006]

Direct Parametrisation (competing risks)

$$L = \prod_{i=1}^{n} \left[\prod_{j=1}^{K} \left[(f_j^s(t_i | \mathbf{x}_j))^{\delta_{ij}} \right] \left[1 - \sum_{j=1}^{K} F_j(t | \mathbf{x}_j) \right]^{1 - \sum_{j=1}^{K} \delta_{ij}} \right]$$

Existing Approaches with Implementation in Stata

- stcrreg: Fine & Gray model
- stcrprep: Restructures the data and calculates appropriate weights [Lambert et al., 2016 (submitted]

Both commands above are computationally intensive due to the requirement of numerical integration and fitting models to an expanded dataset.

Introduction Relationship with the Cause-specific CIF

Flexible Parametric Models for the Cause-Specific CIF

Conclusions

Quick Note on stcrreg

```
. stset survmm, failure(cause == 1) scale(12) id(id) exit(time 180)
  (output omitted)
. stcrreg i.stage, compete(cause == 2, 3)
         failure _d: cause == 1
   analysis time t: survmm/12
  exit on or before: time 180
                 id: id
Iteration 0:
               log pseudolikelihood = -27756.886
Iteration 1:
               log pseudolikelihood = -27756.795
Iteration 2:
               log pseudolikelihood = -27756.795
Competing-risks regression
                                                  No. of obs
                                                                         14,162
                                                  No. of subjects =
                                                                         14,162
                                                  No. failed
                                                                           3,042
Failure event
               : cause == 1
                                                                    =
Competing events: cause == 2 3
                                                  No. competing
                                                                    =
                                                                          4,803
                                                  No. censored
                                                                    =
                                                                           6.317
                                                  Wald chi2(1)
                                                                    =
                                                                         880.27
Log pseudolikelihood = -27756.795
                                                  Prob > chi2
                                                                    =
                                                                         0.0000
                                 (Std. Err. adjusted for 14,162 clusters in id)
                              Robust
                                                           [95% Conf. Interval]
          _t
                      SHR
                             Std. Err.
                                            z
                                                 P>|z|
       stage
   Regional
                 3.502575
                             .1479802
                                         29.67
                                                 0.000
                                                           3.224223
                                                                       3.804958
```

Introduction Relationship with the Cause-specific CIF

Flexible Parametric Models for the Cause-Specific CIF

Conclusions

Quick Note on stcrreg

```
. stset survmm, failure(cause == 1, 2, 3) scale(12) id(id) exit(time 180)
  (output omitted)
gen cause2 = cond(_d==0,0,cause)
. stset survmm, failure(cause2 == 1) scale(12) id(id) exit(time 180)
  (output omitted)
. stcrreg i.stage, compete(cause2 == 2, 3)
         failure d: cause2 == 1
   analysis time _t: survmm/12
  exit on or before: time 180
                 id: id
Iteration 0:
               log pseudolikelihood = -27756.886
               log pseudolikelihood = -27756.795
Iteration 1:
Iteration 2:
               log pseudolikelihood = -27756.795
Competing-risks regression
                                                  No. of obs
                                                                         14,162
                                                  No. of subjects =
                                                                         14,162
Failure event
                · cause2 == 1
                                                  No. failed
                                                                   =
                                                                          3.042
Competing events: cause2 == 2 3
                                                  No. competing
                                                                          4,795
                                                                   =
                                                  No. censored
                                                                   =
                                                                          6.325
                                                  Wald chi2(1)
                                                                   =
                                                                         880.27
Log pseudolikelihood = -27756.795
                                                  Prob > chi2
                                                                   =
                                                                         0.0000
                                (Std. Err. adjusted for 14,162 clusters in id)
                             Robust
          _t
                      SHR
                            Std. Err.
                                                P>IzI
                                                           [95% Conf. Interval]
                                           z
       stage
   Regional
                 3.502575
                            .1479802
                                        29.67
                                                0.000
                                                           3.224223
                                                                       3.804958
```

The stpm2cr Command

- Fit log-cumulative SDH flexible parametric models simultaneously for all cause-specific CIFs
- Uses individual patient data significant computational time gains
- Initial values obtained using stcompet, i.e. the Aalen-Johansen approach, and reg

Main Syntax

stpm2cr [equation1][equation2]...[equationN] [if] [in] , events(varname) [censvalue(#) cause(numlist) level(#) alleq noorthog eform oldest mlmethod(string) lininit maximise_options]

The syntax of each equation is:

causename:[varlist], scale(scalename) [df(#) knots(numlist) tvc(varlist) dftvc(df_list) knotstvc(numlist) bknots(knotslist) bknotstvc(numlist) noconstant cure]

Conclusions 0

U.S. SEER Colorectal Data

- Survival of males diagnosed with colorectal cancer from 1998 to 2013
- Localised and regional stage at diagnosis and ages 75 to 84 years old (14,215)
- Time to death from:
 - Colorectal cancer
 - Heart disease
 - Other causes

Fitting a Model

```
. stset survmm, failure(cause == 1, 2, 3) scale(12) id(id) exit(time 180)
  (output omitted)
. stpm2cr [colrec_cancer: stage2, scale(hazard) df(5)] ///
>       [other_causes: stage2, scale(hazard) df(5)] ///
>        [heart_disease: stage2, scale(hazard) df(5)] ///
>        , events(cause) cause(1 2 3) cens(0) eform nolog
        (output omitted)
Obtaining Initial Values
Starting to Fit Model
```

Relationship		Cause-specific	CI

Flexible Parametric Models for the Cause-Specific CIF

Conclusions

Fitting a Model

Log likelihood = -26795.633		Num	Number of obs		= 14,162	
	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
colrec_cancer						
stage2	3.429293	.1448444	29.18	0.000	3.156836	3.725265
cr_rcs_c1_1	2.413135	.0384796	55.24	0.000	2.338882	2.489744
cr_rcs_c1_2	1.14997	.0120123	13.38	0.000	1.126665	1.173756
cr_rcs_c1_3	1.029327	.0059401	5.01	0.000	1.01775	1.041035
cr_rcs_c1_4	1.066262	.004378	15.63	0.000	1.057716	1.074877
cr_rcs_c1_5	1.014686	.0030352	4.87	0.000	1.008754	1.020652
_cons	.0672821	.0025488	-71.24	0.000	.0624675	.0724678
other_causes						
stage2	.7203278	.0248887	-9.49	0.000	.673162	.7707984
cr_rcs_c2_1	2.977916	.0637639	50.96	0.000	2.855527	3.10555
cr_rcs_c2_2	.9215077	.0122849	-6.13	0.000	.8977415	.9459031
cr_rcs_c2_3	.9148877	.006712	-12.13	0.000	.9018266	.9281379
cr_rcs_c2_4	1.012339	.0052904	2.35	0.019	1.002023	1.022762
cr_rcs_c2_5	.996456	.0034676	-1.02	0.308	.9896827	1.003276
_cons	.1208134	.0033707	-75.75	0.000	.1143843	.1276038
heart_disease						
stage2	.686007	.0343982	-7.52	0.000	.6217948	.7568504
cr_rcs_c3_1	2.795411	.0817361	35.16	0.000	2.639715	2.960291
cr_rcs_c3_2	.9261574	.016438	-4.32	0.000	.8944935	.9589422
cr_rcs_c3_3	.9187738	.0092581	-8.41	0.000	.9008063	.9370997
cr_rcs_c3_4	.9981656	.0071221	-0.26	0.797	.9843037	1.012223
cr_rcs_c3_5	1.00047	.0047326	0.10	0.921	.9912372	1.009789
_cons	.0578301	.0023139	-71.23	0.000	.0534682	.0625479

Conclusions

stpm2cr Post-estimation

predict newvarname [if] [in] [, at(varname # [varname #]) cause(numlist) chrdenominator(varname # [varname # ...]) chrnumerator(varname # [varname # ...]) ci cif cifdiff1(varname # [varname # ...]) cifdiff2(varname # [*varname #* ...]) <u>cifr</u>atio csh cumodds <u>cumsub</u>hazard <u>cure</u>d shrdenominator(varname # [varname # ...]) <u>shrn</u>umerator(*varname* # [*varname* # ...]) <u>subdens</u>ity subhazard survivor timevar(varname) uncured xb zeros deviance dxb level(#)

Conclusions

Comparison with Aalen-Johansen Estimates

Introduction Relationship with the Cause-specific (

Conclusion

Comparison with Aalen-Johansen Estimates

. predict cif_reg, cif at(stage1 0 stage2 1) ci Calculating predictions for the following causes: 1 2 3 $\,$

Regional Stage Patients Aged 75 to 84 yrs old

Relaxing the Proportionality Assumption

```
. stpm2cr [colrec_cancer: stage2, scale(hazard) df(5) tvc(stage2) dftvc(3)] ///
>        [other_causes: stage2, scale(hazard) df(5) tvc(stage2) dftvc(3)] ///
>        [heart_disease: stage2, scale(hazard) df(5) tvc(stage2) dftvc(3)] ///
>        , events(cause) cause(1 2 3) cens(0) eform nolog
        (output omitted)
Obtaining Initial Values
Starting to Fit Model
        (output omitted)
```

Introduction Relationship with the Cause-specific C

Conclusions

Comparison with Aalen-Johansen Estimates

. predict cif_reg_tvc, cif at(stage1 0 stage2 1) ci Calculating predictions for the following causes: 1 2 3

Regional Stage Patients Aged 75 to 84 yrs old

Introduction Relationship with the Cause-specific CIF

Flexible Parametric Models for the Cause-Specific CIF

Relationship with the CSH (Beyersmann & Schumacher, 2007)

$$h_k(t) = \lambda_k(t) \left[1 + rac{\left[\sum_{j=1}^{K} F_j(t)
ight] - F_k(t)}{1 - F(t)}
ight]$$

- Can also calculate the CSH from the model
- To calculate from Fine & Gray model, need to fit models for all causes separately (this could take a long, long time)

Introduction Relationship with the Cause-specific CIF

Flexible Parametric Models for the Cause-Specific CIF

Relationship with the CSH (Beyersmann & Schumacher, 2007)

$$h_k(t) = \lambda_k(t) \left[1 + \frac{\left[\sum_{j=1}^{K} F_j(t) \right] - F_k(t)}{1 - F(t)} \right]$$

- Can also calculate the CSH from the model
- To calculate from Fine & Gray model, need to fit models for all causes separately (this could take a long, long time)

stpm2cif [Hinchliffe and Lambert, 2013] vs. stpm2cr

Introduction Relationship with the Cause-specific CIF

stpm2cif [Hinchliffe and Lambert, 2013] vs. stpm2cr

. predict csh_reg_tvc, csh at(stage1 0 stage2 1) Calculating predictions for the following causes: 1 2 3

Regional Stage Patients Aged 75 to 84 yrs old

Introduction Relationship with the Cause-specific C

Which way should we model?

- If interest is just on the effect of one cause no need to model all cause-specific CIFs
- Aetiological = CSH regression models
 - Directly model covariate effects on the hazard rate for those at risk
- Prognostic (decision-making) = SDH regression models
 - Understand why a covariate affects the cause-specific CIF in a certain way
- Make inferences on both scales for a better understanding [Latouche et al., 2013, Beyersmann et al., 2007]
- Advantage of FPMs: Computationally efficient, useful out-of-sample predictions . . .

Conclusions

- S. I. Mozumder, M.J. Rutherford, and P.C. Lambert. Direct likelihood inference on the cause-specific cumulative incidence function: a flexible parametric regression modelling approach. *Statistics in Medicine*, 2016 (submitted).
- P. Royston and P. C. Lambert. Flexible parametric survival analysis in Stata: Beyond the Cox model. Stata Press, 2011.
- Jong-Hyeon Jeong and Jason Fine. Direct parametric inference for the cumulative incidence function. Journal of the Royal Statistical Society: Series C (Applied Statistics), 55(2):187–200, 2006.
- P.C. Lambert, Wilkes S. R., and M.J. Crowther. Flexible parametric modelling of the cause-specific cumulative incidence function. *Statistics in Medicine*, 2016 (submitted).
- Sally R Hinchliffe and Paul C Lambert. Flexible parametric modelling of cause-specific hazards to estimate cumulative incidence functions. *BMC medical research methodology*, 13(1):1, 2013.
- Aurelien Latouche, Arthur Allignol, Jan Beyersmann, Myriam Labopin, and Jason P Fine. A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. *Journal of clinical epidemiology*, 66(6):648–653, 2013.
- Jan Beyersmann, Markus Dettenkofer, Hartmut Bertz, and Martin Schumacher. A competing risks analysis of bloodstream infection after stem-cell transplantation using subdistribution hazards and cause-specific hazards. Statistics in medicine, 26(30):5360-5369, 2007.
- Hein Putter, M Fiocco, and RB Geskus. Tutorial in biostatistics: competing risks and multi-state models. Statistics in medicine, 26(11):2389–2430, 2007.