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1. Introduction

• Models for panel data are attractive because they may make it
possible to account for time-invariant unobserved individual
characteristics, the so-called fixed effects.

• Consistent estimation of the fixed effects is only possible if T
is allowed to pass to infinity.

• With fixed T it is not possible to perform valid inference
about quantities that require estimates of the fixed effects.

• This is particularly problematic in non-linear models where
often the parameter estimates have little meaning and it is
more interesting to evaluate partial effects or elasticities.

2



2. The linear regression model

• Consider a standard linear panel data model of the form

E [yit |xit , αi ] = αi + βxit , i = 1, . . . , n, t = 1, . . . ,T .

• β (but not αi ) can be consistently estimated with fixed T .

• β gives the partial effect of xit on E [yit |xit , αi ].
• What if we are interested in the semi-elasticity of E [yit |xit , αi ]
with respect to xit?

• For individual i this semi-elasticity is

∂ lnE [yit |xit , αi ]
∂xit

=
β

αi + βxit
,

and therefore it cannot be consistently estimated without a
consistent estimate of αi .
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3. Logit regression

• Let yit be a binary variable such that

E [yit |xit , αi ] = Pr [yit = 1|xit , αi ] =
exp (αi + βxit )

1+ exp (αi + βxit )
.

• It is well known that under suitable regularity conditions
(Andersen, 1970, and Chamberlain, 1980) it is possible to
estimate β consistently with fixed T .

• β is not particularly meaningful, at least for economists.

• It can be seen as the partial effect of xit on the log odds ratio
(Cramer, 2003, p. 13, Buis, 2010).

• It is also related to the partial effect on probabilities computed
conditionally on ∑Ti=1 yit (Cameron and Trivedi, 2005, p. 797).
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• Some practitioners opt for reporting the partial effects and
semi-elasticities evaluated at an arbitrary value αi = c

∂Pr [yit = 1|xit , αi = c ]
∂xit

= β
exp (βxit + c)

(1+ exp (βxit + c))
2 ,

∂ ln Pr [yit = 1|xit , αi = c ]
∂xit

= β
1

1+ exp (βxit + c)

often setting αi = 0.

• These, of course, is not meaningful because the choice of
where to evaluate the individual effect is completely arbitrary.

5



• Wooldridge (2010, p. 622-3) considers an example where
labour force participation of married women depends on the
number of kids less than 18, on the log of husband’s income,
and time dummies.
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• Setting αi = 0, the average elasticity of Pr [yit = 1|xit , αi = 0]
with respect to husband’s income can be computed using
margins.
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• To illustrate how meaningless this result is, let’s repeat the
exercise defining husband’s income in thousands of dollars.
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• Using again margins to estimate the average elasticity of
Pr [yit = 1|xit , αi = 0] with respect to husband’s income we
now get a different result.
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• The problem, of course, is that changing the scale in which
income is measured only changes the values of the fixed
effects, which are not estimated.

• Therefore, Pr [yit = 1|xit , αi = 0] is evaluated at exactly the
same parameters, but using different regressors.

• Therefore, partial effects and elasticities evaluated at αi = 0
are not only meaningless, but their value will depend on how
the regressors are measured.

• However, the average elasticity of Pr [yit = 1|xit , αi ] with
respect to the husband’s income can be estimated
consistently.
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• Let xit = ln (Xit ) where Xit is the husband’s income.

• We want to estimate the average of

eit =
∂ ln Pr [yit = 1|xit , αi ]

∂xit
= β

1
1+ exp (βxit + αi )

• eit obviously depends on αi and therefore cannot be
consistently estimated with fixed T .

• However, to estimate E [eit ] we do not actually need to
compute eit because

E [eit ] = β (1− E [yit ])

which can be consistently estimated by β̂ (1− ȳ), where
ȳ = 1

nT ∑n
i=1 ∑T

i=1 yit .

• This results was first obtained by Yoshitsugu Kitazawa (2012).
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In short

• When xit = ln (Xit ), E [eit ] is the average elasticity with
respect to Xit .

• Otherwise, E [eit ] is the average semi-elasticity with respect
to xit .

• If xit is discrete, for small β, E [eit ] is approximately the
percentage change of Pr (yit = 1|xit , αi ) resulting from a unit
change in xit .

• Unfortunately, the trick does not apply to the partial effects:
• The partial effects have the form β×Var [yit |xit , αi ];
• Var [yit |xit , αi ] cannot be estimated without an estimate of αi ,
but can be bounded;

• It is not clear that having bounds on the partial effects is
interesting.
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• To perform inference about E [eit ] we need to be able to
estimate its variance.

• The computation of such variance is greatly simplified by the
fact that β̂ and ȳ are uncorrelated.

• Indeed, conditionally on the value of the regressors, changes in
ȳ are absorbed by the fixed effects; therefore β̂ is uncorrelated
with ȳ because β is estimated by maximizing the conditional
likelihood, which does not depend on αi .

• Hence:

Var
[
β̂ (1− ȳ)

]
= Var

[
β̂
]
(1− ȳ)2 +Var [ȳ ] β̂

2
.
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4. The aextlogit command

• aextlogit is a wrapper for xtlogit which estimates the
fixed effects logit and reports estimates of the average (semi-)
elasticity of Pr (yit = 1|xit , αi ), and the corresponding
standard errors and t-statistics.

• Syntax is standard:

aextlogit depvar [indepvars] [if] [in] [iweight] [, options]

betas: displays the logit estimates
nolog: suppress the display of the iteration log
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5. Concluding remarks

• A similar results applies to the partial effects in the
exponential regression model (Poisson):

E [yit |xit , αi ] = exp (αi + βxit ) , i = 1, . . . , n, t = 1, . . . ,T .

E
[

∂E [yit |xit , αi ]
∂xit

]
= βE [exp (αi + βxit )] = βE [yit ]

which can be consistently estimated by β̂ȳ .

• Maybe margins should be disabled after xtlogit and
xtpoisson when the fe option is used?
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