

# Using pattern mixture modelling to reduce bias due to informative attrition in the Whitehall II study: a simulation study

Catherine Welch<sup>1</sup> Martin Shipley<sup>1</sup> Séverine Sabia<sup>2</sup> Eric Brunner<sup>1</sup> Mika Kivimäki<sup>1</sup>

<sup>1</sup>Research Department of Epidemiology and Public Health, University College London <sup>2</sup>INSERM U1018, Centre for Research in Epidemiology and Population Health, Villejuif, France

September 7, 2016



## Outline

- 1 Background
- 2 Methods
- 3 Results
- 4 Conclusions



#### Introduction

- Informative attrition can bias longitudinal studies
  - reason for attrition associated with missing outcome values
- Multiple imputation (MI) assumes missing at random not appropriate
- Clinical trials use pattern mixture modelling (PMM), monotone data simplifies analysis
- Observational studies non-monotone, more complex



# Whitehall II cohort study

- 10,308 London civil servants, began 1985
- Health and lifestyle questionnaire completed every 2-3 years (phase), clinic at odd phases
- Epidemiological investigation:
  - Smoking status at baseline (Phase 5) is associated with 10-year cognitive decline
  - Attrition maybe informative, participants with reduced cognitive function withdraw
  - Replaced missing values with last observed value



# Objectives

- Simulation study to investigate using pattern mixture modelling to reduce bias caused by informative attrition in longitudinal observational data
- Using Stata, create 1,000 datasets (10,000 participants) replicating the smoking-cognitive function analysis
- Make values missing using missing not at random (MNAR) missingness mechanisms
- Compare bias in intercept and slope
  - Simulated data (no missing values)
  - Complete case analysis
  - Analyse data imputed using MI
  - PMM sensitivity analysis



## Outline

- 1 Background
- 2 Methods
- 3 Results
- 4 Conclusions

## Substantive model

- Memory score  $(y_{ij})$  for participant j at time i [1]
- Standardised using mean and standard deviation from baseline
- Stratified by sex this analysis includes just men

Mixed effects model with random intercept and slope with interactions between coefficients and time

$$y_{ij} = \beta_0 + \beta_1 smoke_{5j} + \beta_1 smoke_{5j} time_{ij} + U_{0j} + U_{1j} time_{ij} + \varepsilon_i$$

Model also included participant characteristics at baseline (age, occupation grade and education) and their interactions with time



# Generating missing values

- Participation status
  - Responder participated at a given phase, may have item non-response
  - Non-responder unit non-response
  - Confirmed death
- MAR conditional on age, education and occupational grade at baseline
- If responders with item non-response, non-responder or died, replace  $y_{ij}$  with missing value



#### Withdrawn

- Informed Whitehall II they no longer wish to participate
- Participants withdraw at Phases 7, 9 and 11
- Informative (missing not at random)
  - Participants j and phase i assign withdrawal probability  $p_{ij}$  conditional on memory score at the same phase  $Y_{ij}$

$$logit(p_{ij}) = \lambda_0 + \lambda_1 Y_{ij}$$

- Selected  $\lambda_0$  and  $\lambda_1$  to achieve similar percentage withdrawn as Whitehall II study
- Lower memory scores more likely to withdraw



# Summary of multiple imputation

- Specify imputation model, which generates plausible values to replace missing values
- Generate M imputations for each missing value, creating M completed datasets
- Analyse each imputed dataset separately
- Pool estimates and standard errors Rubins rules [2]
- Validity relies on plausible assumptions [3]
  - MAR missingness mechanism
  - Substantive model and imputation model are congenial



#### Stata command twofold

- The two-fold fully conditional specification algorithm [4]
- Suitable for longitudinal data [5]
- Imputes each time point in turn conditional on observations at adjacent time points (time window)
  - Within-time iteration imputes missing values in time window
  - Among-time iteration time window imputes at each time point
- No interactions with time because phases imputed separately
- Available from SSC repository [6]

## twofold syntax

```
(data in wide form)
gen start = 3
gen end = 11 (or phase participant died)
gen base = 5
twofold, timein(start) timeout(end) base(base)
depmis(mem exsmoke) indobs(agec5 grade academ nonsmoke)
conditionon(nonsmoke) condval(0) condvar(exsmoke)
indmis(smkstop5) clear cat(nonsmoke exsmoke grade academ)
m(20) ba(20) bw(5) seed(100)
mi reshape long ...
mi estimate: mixed mem b4.smokebase##c.time c.agec5##c.time
i.grade##c.time i.academ##c.time || stno: time
```

# Pattern mixture modelling

- Specify separate distributions for the observed and missing data [7]
- Distribution of observed outcomes substantive model

$$y_{ij} = \beta_0 + \beta_1 smoke_{5j} + \beta_1 smoke_{5j} time_{ij} + U_{0j} + U_{1j} time_{ij} + \varepsilon_i$$

- Withdrawn indicator R<sub>ii</sub>
- Distribution of missing outcomes for withdrawn, use substantive model and change by k in the imputed outcome

$$y_{ij} = \beta_0 + \beta_1 smoke_{5j} + \beta_1 smoke_{5j} time_{ij} + U_{0j} + U_{1j} time_{ij} + \varepsilon_i + kR_{ij}$$

- For withdrawn participants, change already imputed  $y_{ii}$  values by k
- Sensitivity analysis: k=-0.2, -0.4, -0.6, -0.8 and -1.0



## Outline

- 1 Background
- 2 Methods
- 3 Results
- 4 Conclusions



## Simulated participation status

■ 6,210 male participants from Whitehall II study

| Whiteh               | tehall II study |      |    |  |
|----------------------|-----------------|------|----|--|
| Participation Status | 5               | 7    |    |  |
| Participated,%       | 88.1            | 78.8 | 76 |  |

| Participated,%  | 88.1 | 78.8 | 76.6 | 71.8 |
|-----------------|------|------|------|------|
| Died, %         | N/A  | 2.6  | 5.9  | 10.1 |
| Non-response, % | 11.9 | 14.6 | 12.2 | 11.8 |
| Withdraw %      | NI/A | 4 0  | 53   | 63   |

#### Simulated data

| <b>Participation Status</b> | 5    | 7    | 9    | 11   |
|-----------------------------|------|------|------|------|
| Participated,%              | 89.6 | 80.3 | 78.1 | 73.3 |
| Died, %                     | N/A  | 2.4  | 5.5  | 9.0  |
| Non-response, %             | 10.4 | 13.6 | 11.2 | 11.0 |
| Withdraw, %                 | N/A  | 3.8  | 5.3  | 6.6  |



# Analysing simulated data, mean

Simulated data, complete case and imputed data estimates averaged over 1,000 datasets

|                | king status<br>baseline | WII<br>study | Simulated data | Complete<br>Case | Multiple imputation |
|----------------|-------------------------|--------------|----------------|------------------|---------------------|
| Intercept      | Current smoker          | -0.080       | -0.079         | -0.140           | -0.051              |
|                | Recent ex-smoker        | -0.081       | -0.079         | -0.138           | -0.016              |
|                | Long-term ex-smoker     | 0.071        | 0.073          | 0.004            | 0.098               |
|                | Never smoker            | 0.026        | 0.027          | -0.039           | 0.057               |
| Slope          | Current smoker          | -0.412       | -0.414         | -0.354           | -0.338              |
| (per 10 years) | Recent ex-smoker        | -0.313       | -0.316         | -0.264           | -0.282              |
|                | Long-term ex-smoker     | -0.409       | -0.410         | -0.366           | -0.368              |
|                | Never smoker            | -0.354       | -0.355         | -0.311           | -0.311              |

Also adjusted for age, education and employment grade and interactions with time



# Pattern mixture modelling results, mean

Simulated data, imputed and pattern mixture modelling estimates averaged over 1,000 datasets

| Smok        | ing status   | WII    | Imputed | Pattern mixture modelling (k) |        |        | )      |        |
|-------------|--------------|--------|---------|-------------------------------|--------|--------|--------|--------|
| at baseline |              | study  | data    | -0.2                          | -0.4   | -0.6   | -0.8   | -1.0   |
| Intercept   | Current      | -0.079 | -0.051  | -0.051                        | -0.054 | -0.056 | -0.057 | -0.059 |
|             | Recent ex    | -0.079 | -0.016  | -0.016                        | -0.019 | -0.021 | -0.022 | -0.024 |
|             | Long-term ex | 0.073  | 0.098   | 0.096                         | 0.094  | 0.093  | 0.091  | 0.090  |
|             | Never        | 0.027  | 0.057   | 0.056                         | 0.055  | 0.054  | 0.053  | 0.051  |
| Slope       | Current      | -0.414 | -0.338  | -0.360                        | -0.383 | -0.406 | -0.429 | -0.452 |
| (per 10     | Recent ex    | -0.316 | -0.282  | -0.304                        | -0.324 | -0.346 | -0.367 | -0.388 |
| years)      | Long-term ex | -0.410 | -0.368  | -0.388                        | -0.407 | -0.427 | -0.448 | -0.468 |
|             | Never        | -0.355 | -0.311  | -0.328                        | -0.345 | -0.362 | -0.378 | -0.395 |

Also adjusted for age, education and employment grade and interactions with time



## Outline

- 1 Background
- 2 Methods
- 3 Results
- 4 Conclusions



## Conclusions

- Results suggest pattern mixture modelling and the two-fold fully conditional specification algorithm may reduce bias due to informative attrition in longitudinal, observational data
- In this example, PMM reduced bias in the slope due to participants withdrawing after baseline
- Reduced bias in main effect for time and interaction with time
- Recommend considering an appropriate approach as sensitivity analysis if suspect attrition is informative
- Next: apply these methods to impute missing values for withdrawn participants in Whitehall II study



# Whitehall II Data Sharing

The Whitehall II research data are available to *bona fide* researchers for research purposes and public benefit.

Please visit our website on:

http://www.ucl.ac.uk/whitehallII/data-sharing



## References I



S. Sabia, A. Elbaz, A. Dugravot, J. Head, M. Shipley, G.H. Hagger-Johnson, M. Kivimaki, and A. Singh-Manoux. Impact of smoking on congitive decline in early old age. Arch Gen Psychiatry, 69(6):627–635, 2012.



D.B. Rubin.

Multiple imputation for nonresponse in surveys. Wiley, New York, 1987.



J. Carpenter and M.G. Kenward.

Multiple Imputation and its Application.

Wiley, UK, 2013.



## References II



J. Nevalainen, M.G. Kenward, and S.M. Virtanen.

Missing values in longitudinal dietary data: a multiple imputation approach based on a fully conditional specification.

Statistics in Medicine, 28(29):3657-3669, 2009.



C. Welch, Petersen I., J. Bartlett, I. White, L. Marston, R. Morris, I. Nazareth, K. Walters, and J. Carpenter.

Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data.

Stat.Med., 33(21):3725-3737, 2014.



C. Welch, J. Bartlett, and Petersen I.

Application of multiple imputation using the two-fold fully conditional specification algorithm in longitudinal clinical data.

Stata Journal, 14(2):418-431, 2014.



#### References III



D. Hedeker and R.D. Gibbons.

Application of random-effects pattern-mixture models for missing data in longitudinal studies.

Psychological Methods, 2(1):64-78, 1997.