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Background

The on-going revolution in data science and machine learning (ML) has
not gone unnoticed in economics & social science.

See surveys by Mullainathan and Spiess, 2017; Athey, 2017; Varian, 2014.

(Supervised) Machine learning
Focus on prediction & classification.
Wide set of methods: support vector machines, random forests,
neural networks, penalized regression, etc.
Typical problems: predict user-rating of films (Netflix), classify email
as spam or not, Genome-wide association studies

Econometrics and allied fields
Focus on causal inference using OLS, IV/GMM, Maximum Likelihood.
Typical question: Does x have a causal effect on y?

Central question:
How can econometricians+allies learn from machine learning?
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Motivation I: Model selection

The standard linear model

yi = β0 + β1x1i + . . .+ βpxpi + εi .

Why would we use a fitting procedure other than OLS?

Model selection.

We don’t know the true model. Which regressors are important?

Including too many regressors leads to overfitting: good in-sample fit
(high R2), but bad out-of-sample prediction.

Including too few regressors leads to omitted variable bias.
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Motivation I: Model selection

The standard linear model

yi = β0 + β1x1i + . . .+ βpxpi + εi .

Why would we use a fitting procedure other than OLS?

Model selection.

Model selection becomes even more challenging when the data is
high-dimensional.

If p is close to or larger than n, we say that the data is high-dimensional.
If p > n, the model is not identified.
If p = n, perfect fit. Meaningless.
If p < n but large, overfitting is likely: Some of the predictors are only
significant by chance (false positives), but perform poorly on new
(unseen) data.
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Motivation I: Model selection

The standard linear model

yi = β0 + β1x1i + . . .+ βpxpi + εi .

Why would we use a fitting procedure other than OLS?

High-dimensional data.

Large p is often not acknowledged in applied work:
The true model is unknown ex ante. Unless a researcher runs one and
only one specification, the low-dimensional model paradigm is likely to
fail.
The number of regressors increases if we account for non-linearity,
interaction effects, parameter heterogeneity, spatial & temporal
effects.

Example: Cross-country regressions, where we have only small number of
countries, but thousands of macro variables.
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Motivation I: Model selection

The standard approach for model selection in econometrics is (arguably)
hypothesis testing.

Problems:
Pre-test biases in multi-step procedures. This also applies to model building
using, e.g., the general-to-specific approach (Dave Giles).
Especially if p is large, inference is problematic. Need for false discovery
control (multiple testing procedures)—rarely done.
‘Researcher degrees of freedom’ and ‘p-hacking’: researchers try many
combinations of regressors, looking for statistical significance (Simmons
et al., 2011).

Researcher degrees of freedom
“it is common (and accepted practice) for researchers to explore various analytic
alternatives, to search for a combination that yields ‘statistical significance,’ and to then
report only what ‘worked.”’ Simmons et al., 2011
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Motivation II: Prediction

The standard linear model

yi = β0 + β1x1i + . . .+ βpxpi + εi .

Why would we use a fitting procedure other than OLS?

Bias-variance-tradeoff.

OLS estimator has zero bias, but not necessarily the best out-of-sample
predictive accuracy.

Suppose we fit the model using the data i = 1, . . . , n. The prediction error
for y0 given x0 can be decomposed into

PE0 = E [(y0 − ŷ0)2] = σ2ε + Bias(ŷ0)2 + Var(ŷ0).

In order to minimize the expected prediction error, we need to select low
variance and low bias, but not necessarily zero bias!
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Motivation II: Prediction
Low Variance High Variance
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The squared points (‘�’) indicate the true value and round points (‘◦’) represent estimates. The diagrams illustrate that a high
bias/low variance estimator may yield predictions that are on average closer to the truth than predictions from a low bias/high
variance estimator.
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Motivation II: Prediction

There are cases where ML methods can be applied ‘off-the-shelf’ to policy
questions.

Kleinberg et al. (2015) and Athey (2017) provide some examples:
Predict patient’s life expectancy to decide whether hip replacement surgery
is beneficial.
Predict whether accused would show up for trial to decide who can be let
out of prison while awaiting trial.
Predict loan repayment probability.

But: in other cases, ML methods are not directly applicable for research
questions in econometrics and allied fields, especially when it comes to
causal inference.
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Motivation III: Causal inference

Machine learning offers a set of methods that outperform OLS in terms
of out-of-sample prediction.

But economists are in general more interested in causal inference.

Recent theoretical work by Belloni, Chernozhukov, Hansen and their
collaborators has shown that these methods can also be used in estimation
of structural models.

Two very common problems in applied work:
Selecting controls to address omitted variable bias when many
potential controls are available
Selecting instruments when many potential instruments are
available.
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Background

Today, we introduce two Stata packages:

LASSOPACK (including lasso2, cvlasso & rlasso)
implements penalized regression methods: LASSO, elastic net, ridge,
square-root LASSO, adaptive LASSO.
uses fast path-wise coordinate descent algorithms (Friedman et al., 2007).
three commands for three different penalization approaches: cross-validation
(cvlasso), information criteria (lasso2) and ‘rigorous’ (theory-driven)
penalization (rlasso).
focus is on prediction & model selection.

PDSLASSO (including pdslasso and ivlasso):
relies on the estimators implemented in LASSOPACK

intended for estimation of structural models.
allows for many controls and/or many instruments.
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High-dimensional data

The general model is:

yi = x ′i β + εi

We index observations by i and regressors by j . We have up to
p = dim(β) potential regressors. p can be very large, potentially even
larger than the number of observations n.

The high-dimensional model accommodates situations where we only
observe a few explanatory variables, but the number of potential regressors
is large when accounting for model uncertainty, non-linearity, temporal &
spatial effects, etc.

OLS leads to disaster: If p is large, we overfit badly and classical
hypothesis testing leads to many false positives. If p > n, OLS is not
identified.
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High-dimensional data

The general model is:

yi = x ′i β + εi

This becomes manageable if we assume (exact) sparsity: of the p
potential regressors, only s regressors belong in the model, where

s :=
p∑

j=1
1{βj 6= 0} � n.

In other words: most of the true coefficients βj are actually zero. But we
don’t know which ones are zeros and which ones aren’t.

We can also use the weaker assumption of approximate sparsity: some of
the βj coefficients are well-approximated by zero, and the approximation
error is sufficiently ‘small’.
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The LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator,
Tibshirani, 1996), “`1 norm”.

Minimize: 1
n

n∑
i=1

(
yi − x ′i β

)2 + λ
p∑

j=1
|βj |

There’s a cost to including lots of regressors, and we can reduce the
objective function by throwing out the ones that contribute little to the fit.

The effect of the penalization is that LASSO sets the β̂js for some
variables to zero. In other words, it does the model selection for us.

In contrast to `0-norm penalization (AIC, BIC) computationally feasible.
Path-wise coordinate descent (‘shooting’) algorithm allows for fast
estimation.
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The LASSO

The LASSO estimator can also be written as

β̂L = arg min
n∑

i=1
(yi − x ′i β)2 s.t.

p∑
j=1
|βj | < τ.

Example:
p = 2.
Blue diamond is the constraint
region |β1|+ |β2| < τ .
β̂0 is the OLS estimate.
β̂L is the LASSO estimate.
Red lines are RSS contour lines.
β̂1,L = 0 implying that the LASSO
omits regressor 1 from the model.

β2

β1

β̂0

β̂L
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LASSO vs Ridge

For comparison, the Ridge estimator is

β̂R = arg min
n∑

i=1
(yi − x ′i β)2 s.t.

p∑
j=1

βj
2 < τ.

Example:
p = 2.
Blue circle is the constraint region
β1

2 + β2
2 < τ .

β̂0 is the OLS estimate.
β̂R is the Ridge estimate.
Red lines are RSS contour lines.
β̂1,L 6= 0 and β̂2,L 6= 0. Both
regressors are included.

β2

β1

β̂0

β̂R
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The LASSO: The solution path
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The LASSO coefficient path is a continuous and piecewise linear function of λ,
with changes in slope where variables enter/leave the active set.
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The LASSO: The solution path
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The LASSO yields sparse solutions. As λ increases, variables are being removed
from the model. Thus, the LASSO can be used for model selection.
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The LASSO: The solution path
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We have reduced a complex model selection problem into a one-dimensional
problem. We ‘only’ need to choose the ‘right’ penalty level, i.e., λ.
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LASSO vs Ridge solution path
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Ridge regression: No sparse solutions. The Ridge is not a model selection
technique.
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The LASSO: Choice of the penalty level

The penalization approach allows us to simplify the model selection
problem to a one-dimensional problem.

But how do we select λ? — Three approaches:

Data-driven: re-sample the data and find the λ that optimizes
out-of-sample prediction. This approach is referred to as cross-validation.

→ Implemented in cvlasso.
‘Rigorous’ penalization: Belloni et al. (2012, Econometrica) develop
theory and feasible algorithms for the optimal λ under heteroskedastic and
non-Gaussian errors. Feasible algorithms are available for LASSO and
square-root LASSO.

→ Implemented in rlasso.
Information criteria: select the value of λ that minimizes information
criterion (AIC, AICc, BIC or EBICγ).

→ Implemented in lasso2.
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The LASSO: K-fold cross-validation
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Validation

Validation

Validation

Validation

Validation

Training

Step 1 Divide data set into 5 groups (folds) of approximately equal size.
Step 2 Treat fold 1 as the validation data set. Fold 2-5 constitute the

training data.
Step 3 Estimate the model using the training data. Assess predictive

performance for a range of λ using the validation data.
Step 4 Repeat Step 2-3 using folds 2, . . . , 5 as validation data.
Step 5 Identify the λ that shows best out-of-sample predictive

performance.
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The LASSO: K-fold cross-validation
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The solid vertical line corresponds to the lambda value that minimizes the mean-squared prediction error (λlopt). The dashed
line marks the largest lambda at which the MSPE is within one standard error of the minimal MSPE (λlse).
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The LASSO: h-step ahead cross-validation*

Cross-validation can also be applied in the time-series context.

Let T denote an observation in the training data set, and V an observation in the
validation data set. ‘ . ’ indicates that an observation is not being used.

We can divide the data set as follows:

Step

1 2 3 4 5

1 T T T T T
2 T T T T T
3 T T T T T
4 V T T T T

t 5 . V T T T
6 . . V T T
7 . . . V T
8 . . . . V



Step

1 2 3 4 5

1 T T T T T
2 T T T T T
3 T T T T T
4 . T T T T

t 5 V . T T T
6 . V . T T
7 . . V . T
8 . . . V .
9 . . . . V


1-step ahead cross-validation 2-step ahead cross-validation

See Hyndman, RJ, Hyndsight blog.
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The LASSO: Theory-driven penalty

While cross-validation is a popular & powerful method for predictive
purposes, it is often said to lack theoretical justification.

The theory of the ‘rigorous’ LASSO has two main ingredients:
Restricted eigenvalue condition (REC): OLS requires full rank condition,
which is too strong in the high-dimensional context. REC is much weaker.
Penalization level: We need λ to be large enough to ‘control’ the noise in
the data. At the same time, we want the penalty to be as small as possible
(due to shrinkage bias).

This allows to derive theoretical results for the LASSO:
→ consistent prediction and parameter estimation.

The theory of Belloni et al. (2012) allows for non-Gaussian &
heteroskedastic errors, and has been extended to panel data (Belloni et al.,
2016).
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The LASSO: Information criteria

We have implemented the following information criteria:

AIC(λ, α) = N log
(
σ̂2(λ, α)

)
+ 2df (λ, α)

BIC(λ, α) = N log
(
σ̂2(λ, α)

)
+ df (λ, α) log(N)

AICc(λ, α) = N log
(
σ̂2(λ, α)

)
+ 2df (λ, α) N

N − df (λ, α)

EBICγ(λ, α) = N log
(
σ̂2(λ, α)

)
+ df (λ, α) log(N) + 2γdf (λ, α) log(p)

df is the degrees of freedom. For the LASSO, df is equal to the number
of non-zero coefficients (Zou et al., 2007).
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The LASSO: Information criteria

Both AIC and BIC are less suitable in the large-p-small-N setting where
they tend to select too many variables.

AICc addresses the small sample bias of AIC and should be favoured over
AIC if n is small (Sugiura, 1978; Hurvich and Tsai, 1989).

The BIC underlies the assumption that each model has the same
probability. While this assumption seems reasonable if the researcher has
no prior knowledge, it causes the BIC to over-select in the
high-dimensional context.

Chen and Chen (2008) introduce the Extended BIC, which imposes an
additional penalty on the number of parameters. The prior distribution is
chosen such that dense models are less likely.
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LASSO-type estimators

Various alternative estimators have been inspired by the LASSO; to
name a few (all implemented in LASSOPACK):

Square-root LASSO (Belloni et al., 2011, 2014a)

β̂√lasso = arg min

√√√√ 1
N

N∑
i=1

(yi − x ′i β)2 + λ

N

p∑
j=1

φj |βj |,

The main advantage of the square-root LASSO comes into effect when
rigorous penalization is employed: the optimal λ is independent of the
unknown error under homoskedasticity, implying a practical advantage.
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LASSO-type estimators

Various alternative estimators have been inspired by the LASSO; to
name a few (all implemented in LASSOPACK):

Elastic net (Zou and Hastie, 2005)

The elastic net introduced by Zou and Hastie (2005) applies a mix of `1
(LASSO-type) and `2 (ridge-type) penalization:

β̂elastic = arg min 1
N

N∑
i=1

(
yi − x ′i β

)2 + λ

N

α p∑
j=1

ψj |βj |+ (1− α)
p∑

j=1
ψjβ

2
j


where α ∈ [0, 1] controls the degree of `1 (LASSO-type) to `2 (ridge-type)
penalization. α = 1 corresponds to the LASSO, and α = 0 to ridge
regression.
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LASSO-type estimators

Various alternative estimators have been inspired by the LASSO; to
name a few (all implemented in LASSOPACK):

Post-estimation OLS (Belloni et al, 2012, 2013)

Penalized regression methods induce an attenuation bias that can be
alleviated by post-estimation OLS, which applies OLS to the variables
selected by the first-stage variable selection method, i.e.,

β̂post = arg min 1
N

N∑
i=1

(
yi − x ′i β

)2 subject to βj = 0 if β̃j = 0, (1)

where β̃j is a sparse first-step estimator such as the LASSO. Thus,
post-estimation OLS treats the first-step estimator as a genuine model
selection technique.

29 / 86



LASSO-type estimators

Model selection is a much more difficult problem than prediction. The
LASSO is only model selection consistent under the rather strong
irrepresentable condition (Zhao and Yu, 2006; Meinshausen and
Bühlmann, 2006).

This shortcoming motivated the Adaptive LASSO (Zou, 2006):

β̂alasso = arg min 1
N

N∑
i=1

(
yi − x ′i β

)2 + λ

N

p∑
j=1

φ̂j |βj |,

with φ̂j = 1/|β̂0,j |θ. β̂0,j is an initial estimator, such OLS, univariate OLS
or the LASSO.

The Adaptive LASSO is variable-selection consistent for fixed p under
weaker assumptions than the standard LASSO.
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LASSOPACK

LASSOPACK includes three commands: lasso2 implements LASSO and
related estimators. cvlasso supports cross-validation, and rlasso offers
the ‘rigorous’ (theory-driven) approach to penalization.

Basic syntax
lasso2 depvar indepvars

[
if
][

in
][

, ...
]

cvlasso depvar indepvars
[
if
][

in
][

, ...
]

rlasso depvar indepvars
[
if
][

in
][

, ...
]

All three commands support replay syntax and come with plenty of
options. See the help files on SSC or https://statalasso.github.io/
for the full syntax and list of options.
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Application: Predicting Boston house prices

For demonstration, we use house price data available on the StatLib
archive.

Number of observations: 506 census tracts
Number of variables: 14

Dependent variable: median value of owner-occupied homes (medv)

Predictors: crime rate, environmental measures, age of housing stock, tax
rates, social variables. (See Descriptions.)
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LASSOPACK: the lasso2 command

Estimate LASSO (default estimator) for a range of lambda values.

. lasso2 medv crim-lstat
Knot ID Lambda s L1-Norm EBIC R-sq Entered/removed

1 1 6858.98553 1 0.00000 2255.87077 0.0000 Added _cons.
2 2 6249.65216 2 0.08440 2218.17727 0.0924 Added lstat.
3 3 5694.45029 3 0.28098 2182.00996 0.1737 Added rm.
4 10 2969.09110 4 2.90443 1923.18586 0.5156 Added ptratio.
5 20 1171.07071 5 4.79923 1763.74425 0.6544 Added b.
6 22 972.24348 6 5.15524 1758.73342 0.6654 Added chas.
7 26 670.12972 7 6.46233 1745.05577 0.6815 Added crim.
8 28 556.35346 8 6.94988 1746.77384 0.6875 Added dis.
9 30 461.89442 9 8.10548 1744.82696 0.6956 Added nox.

10 34 318.36591 10 13.72934 1730.58682 0.7106 Added zn.
11 39 199.94307 12 18.33494 1733.17551 0.7219 Added indus rad.
12 41 165.99625 13 20.10743 1736.45725 0.7263 Added tax.
13 47 94.98916 12 23.30144 1707.00224 0.7359 Removed indus.
14 67 14.77724 13 26.71618 1709.60624 0.7405 Added indus.
15 82 3.66043 14 27.44510 1720.65484 0.7406 Added age.

Use ´long´ option for full output. Type e.g. ´lasso2, lic(ebic)´ to run the model selected by EBIC.

Columns in output show:
Knot – points at which predictors enter or leave the active set (i.e., set of selected variables)
ID – Index of lambda values
Lambda – lambda values (default is to use 100 lambdas)
s – number of selected predictors (including the constant)
L1-Norm – L1-norm of coefficient vector
EBIC – Extended BIC. Note: use ic(string) to display AIC, BIC or AICc
R-sq – R-squared
Entered/removed – indicates which predictors enter or leave the active set at knot
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LASSOPACK: the lasso2 command

Estimate LASSO (default estimator) for a range of lambda values.

. lasso2 medv crim-lstat
Knot ID Lambda s L1-Norm EBIC R-sq Entered/removed

1 1 6858.98553 1 0.00000 2255.87077 0.0000 Added _cons.
2 2 6249.65216 2 0.08440 2218.17727 0.0924 Added lstat.
3 3 5694.45029 3 0.28098 2182.00996 0.1737 Added rm.
4 10 2969.09110 4 2.90443 1923.18586 0.5156 Added ptratio.
5 20 1171.07071 5 4.79923 1763.74425 0.6544 Added b.
6 22 972.24348 6 5.15524 1758.73342 0.6654 Added chas.
7 26 670.12972 7 6.46233 1745.05577 0.6815 Added crim.
8 28 556.35346 8 6.94988 1746.77384 0.6875 Added dis.
9 30 461.89442 9 8.10548 1744.82696 0.6956 Added nox.

10 34 318.36591 10 13.72934 1730.58682 0.7106 Added zn.
11 39 199.94307 12 18.33494 1733.17551 0.7219 Added indus rad.
12 41 165.99625 13 20.10743 1736.45725 0.7263 Added tax.
13 47 94.98916 12 23.30144 1707.00224 0.7359 Removed indus.
14 67 14.77724 13 26.71618 1709.60624 0.7405 Added indus.
15 82 3.66043 14 27.44510 1720.65484 0.7406 Added age.

Use ´long´ option for full output. Type e.g. ´lasso2, lic(ebic)´ to run the model selected by EBIC.

Selected lasso2 options:
sqrt: use square-root LASSO.
alpha(real): use elastic net. real must lie in the interval [0,1]. alpha(1) is the LASSO
(the default) and alpha(0) corresponds to ridge.
adaptive: use adaptive LASSO.
ols: use post-estimation OLS.
plotpath(string), plotvar(varlist), plotopt(string) and plotlabel are for plotting.

See help lasso2 or https://statalasso.github.io/ for full syntax and list of options.
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LASSOPACK: the lasso2 command

Run model selected by EBIC (using replay syntax):

. lasso2, lic(ebic)
Use lambda=16.21799867742649 (selected by EBIC).

Selected Lasso Post-est OLS

crim -0.1028391 -0.1084133
zn 0.0433716 0.0458449

chas 2.6983218 2.7187164
nox -16.7712529 -17.3760262
rm 3.8375779 3.8015786

dis -1.4380341 -1.4927114
rad 0.2736598 0.2996085
tax -0.0106973 -0.0117780

ptratio -0.9373015 -0.9465246
b 0.0091412 0.0092908

lstat -0.5225124 -0.5225535

Partialled-out*

_cons 35.2705812 36.3411478

The lic(ebic) option can either be specified using the replay syntax or in the first
lasso2 call.
lic(ebic) can be replaced by lic(aicc), lic(aic) or lic(bic).
Both LASSO and post-estimation OLS estimates are shown.
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LASSOPACK: the cvlasso command

K -fold cross-validation with 10 folds using the LASSO (default behaviour).

. cvlasso medv crim-lstat, seed(123)
K-fold cross-validation with 10 folds. Elastic net with alpha=1.
Fold 1 2 3 4 5 6 7 8 9 10

Lambda MSPE st. dev.

1 6858.9855 84.302552 5.7124688
..

32 383.47286 26.365176 3.5552884 ^
..

64 19.534637 23.418936 3.1298343 *
..

100 .68589855 23.441481 3.1133575
* lopt = the lambda that minimizes MSPE.

Run model: cvlasso, lopt
^ lse = largest lambda for which MSPE is within one standard error of the minimal MSPE.

Run model: cvlasso, lse

Selected cvlasso options:
sqrt, alpha(real), adaptive, etc. to control choice of estimation method.
rolling: triggers rolling h-step ahead cross-validation (various options available).
plotcv(string) and plotopt(string) for plotting.

See help cvlasso or https://statalasso.github.io/ for full syntax and list of options.
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LASSOPACK: the cvlasso command

Run model using value of λ that minimizes MSPE (using replay syntax):

. cvlasso, lopt
Estimate lasso with lambda=19.535 (lopt).

Selected Lasso Post-est OLS

crim -0.1016991 -0.1084133
zn 0.0428658 0.0458449

chas 2.6941511 2.7187164
nox -16.6475746 -17.3760262
rm 3.8449399 3.8015786

dis -1.4268524 -1.4927114
rad 0.2683532 0.2996085
tax -0.0104763 -0.0117780

ptratio -0.9354154 -0.9465246
b 0.0091106 0.0092908

lstat -0.5225040 -0.5225535

Partialled-out*

_cons 35.0516465 36.3411478

lopt can be replaced by lse, which leads to a more parsimonious specification.
lopt/lse can either be specified using the replay syntax (as above) or added to the first
cvlasso call.
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LASSOPACK: the rlasso command

Estimate ‘rigorous’ LASSO:

. rlasso medv crim-lstat

Selected Lasso Post-est OLS

chas 0.7844330 3.3200252
rm 4.0515800 4.6522735

ptratio -0.6773194 -0.8582707
b 0.0039067 0.0101119

lstat -0.5017705 -0.5180622
_cons * 14.4716482 11.8535884

*Not penalized

rlasso uses feasible algorithms to estimate the optimal penalty level & loadings, and
allows for non-Gaussian, heteroskedastic and cluster-dependence errors.
In contrast to lasso2 and cvlasso, rlasso reports the selected model at the first call.
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LASSOPACK: the rlasso command

Estimate ‘rigorous’ LASSO:

. rlasso medv crim-lstat

Selected Lasso Post-est OLS

chas 0.7844330 3.3200252
rm 4.0515800 4.6522735

ptratio -0.6773194 -0.8582707
b 0.0039067 0.0101119

lstat -0.5017705 -0.5180622
_cons * 14.4716482 11.8535884

*Not penalized

Selected options:
sqrt: use rigorous square-root LASSO
robust: penalty level and penalty loadings account for heteroskedasticity
cluster(varname): penalty level and penalty loadings account for clustering on variable
varname

See help rlasso or https://statalasso.github.io/ for full syntax and list of options.
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Application: Predicting Boston house prices

We divide the sample in half (253/253). Use first half for estimation, and
second half for assessing prediction performance.

Estimation methods:
‘Kitchen sink’ OLS: include all regressors
Stepwise OLS: begin with general model and drop if p-value > 0.05
‘Rigorous’ LASSO with theory-driven penalty
LASSO with 10-fold cross-validation
LASSO with penalty level selected by information criteria
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Application: Predicting Boston house prices

We divide the sample in half (253/253). Use first half for estimation, and
second half for assessing prediction performance.

OLS Stepwise rlasso cvlasso lasso2 lasso2
AIC/AICc BIC/EBIC1

crim 1.201∗ 1.062∗ 0.985 1.053
zn 0.0245 0.0201 0.0214
indus 0.01000
chas 0.425 0.396 0.408
nox -8.443 -8.619∗ -6.560 -7.067
rm 8.878∗∗∗ 9.685∗∗∗ 8.681 8.925 8.909 9.086
age -0.0485∗∗∗ -0.0585∗∗∗ -0.00608 -0.0470 -0.0475 -0.0335
dis -1.120∗∗∗ -0.956∗∗∗ -1.025 -1.057 -0.463
rad 0.204 0.158 0.171
tax -0.0160∗∗∗ -0.0121∗∗∗ -0.00267 -0.0148 -0.0151 -0.00925
ptratio -0.660∗∗∗ -0.766∗∗∗ -0.417 -0.660 -0.659 -0.659
b 0.0178∗∗∗ 0.0175∗∗∗ 0.000192 0.0169 0.0172 0.0110
lstat -0.115∗ -0.124 -0.113 -0.113 -0.109
Selected predictors 13 8 6 12 12 7
in-sample RMSE 3.160 3.211 3.656 3.164 3.162 3.279
out-of-sample RMSE 17.42 15.01 7.512 14.78 15.60 7.252
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Constant omitted.
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Application: Predicting Boston house prices

OLS exhibits lowest in-sample RMSE, but worst out-of-sample
prediction performance. Classical example of overfitting.
Stepwise regression performs slightly better than OLS, but is known
to have many problems: biased (over-sized) coefficients, inflated R2,
invalid p-values.
In this example, AIC & AICc and BIC & EBIC1 yield the same results,
but AICc and EBIC are generally preferable for large-p-small-n
problems.
LASSO with ‘rigorous’ penalization and LASSO with BIC/EBIC1
exhibit best out-of-sample prediction performance.
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Interlude: Stata/Mata coding issues

Parameter vectors may start out large and end up large, or start out large
and end up sparse. How to store and report?

Stata’s factor variables and operators: extremely powerful, very useful.
Specify multiple interactions and model quickly becomes high-dimensional.
But can be hard to work with subsets of factor variables (e.g. Stata
extended macro function : colnames b will rebase the selected subset
of factor variables extracted from b). Our solution: create temp vars and
maintain a dictionary relating them to a clean list of factor vars.

Cross-validation means repeatedly creating many temp vars when vars are
standardized (scaled). Can be slow.

Trick #1: Use uninitialized temp vars created in Mata rather than temp vars
intialized to missing in Stata.
Trick #2: Optionally avoid temp vars completely by standardizing on-the-fly
(i.e., when estimating) instead of repeatedly creating new standardized vars
ex ante.
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The LASSO and Causal Inference

The main strength of the LASSO is prediction (rather than model
selection). But the LASSO’s strength as a prediction technique can also
be used to aid causal inference.

Basic setup: we already know the causal variable of interest. No variable
selection needed for this. But the LASSO can be used to select other
variables or instruments used in the estimation.

Two cases:
(1) Selection of controls, to address omitted variable bias.
(2) Selection of instruments, to address endogeneity via IV estimation.

We look at selection of controls first (implemented in pdslasso) and then
selection of IVs (implemented in ivlasso).

NB: the package can be used for problems involving selection of both
controls and instruments.
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Choosing controls: Post-Double-Selection LASSO

Our model is
yi = αdi︸ ︷︷ ︸

aim

+ β1xi ,1 + . . .+ βpxi ,p︸ ︷︷ ︸
nuisance

+εi .

The causal variable of interest or “treatment” is di . The xs are the set of
potential controls and not directly of interest. We want to obtain an
estimate of the parameter α.

The problem is the controls. We want to include controls because we
are worried about omitted variable bias – the usual reason for including
controls.

But which ones do we use?
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Choosing controls: Post-Double-Selection LASSO

But which controls do we use?

If we use too many, we run into a version of the overfitting problem. We
could even have p > n, so using them all is just impossible.

If we use too few, or use the wrong ones, then OLS gives us a biased
estimate of α because of omitted variable bias.

And to make matters worse: “researcher degrees of freedom” and
“p-hacking”. Researchers may consciously or unconsciously choose controls
to generate the results they want.

Theory-driven choice of controls can not only generate good performance
in estimation, it can also reduce the “researcher degrees of freedom” and
restrain p-hacking.
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Choosing controls: Post-Double-Selection LASSO

Our model is
yi = αdi︸ ︷︷ ︸

aim

+ β1xi ,1 + . . .+ βpxi ,p︸ ︷︷ ︸
nuisance

+εi .

Naive approach: estimate the model using the LASSO (imposing that di
is not subject to selection), and use the controls selected by the LASSO.

Badly biased. Reason: we might miss controls that have a strong
predictive power for di , but only small effect on yi .

Similarly, if we only consider the regression of di against the controls, we
might miss controls that have a strong predictive power for yi , but only a
moderately sized effect on di . See Belloni et al. (2014b).
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Choosing controls: Post-Double-Selection LASSO

Post-Double-Selection (PDS) LASSO (Belloni et al., 2014c, ReStud):
Step 1: Use the LASSO to estimate

yi = β1xi ,1 + β2xi ,2 + . . .+ βjxi ,j + . . .+ βpxi ,p + εi ,

i.e., without di as a regressor. Denote the set of LASSO-selected
controls by A.
Step 2: Use the LASSO to estimate

di = β1xi ,1 + β2xi ,2 + . . .+ βjxi ,j + . . .+ βpxi ,p + εi ,

i.e., where the causal variable of interest is the dependent variable.
Denote the set of LASSO-selected controls by B.
Step 3: Estimate using OLS

yi = αdi + w′iβ + εi

where wi = A ∪ B, i.e., the union of the selected controls from
Steps 1 and 2.
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Choosing controls: “Double-Orthogonalization”

An alternative to PDS: “Double-Orthogonalization”, proposed by
Chernozhukov-Hansen-Spindler 2015 (CHS).

The PDS method is equivalent to Frisch-Waugh-Lovell partialling-out all
selected controls from both yi and di .

The CHS method essentially partials out from yi only the controls in set
A (selected in Step 1, using the LASSO with yi on the LHS), and partials
out from di only the controls in set B (selected in Step 2, using the
LASSO with di on the LHS).

CHS partialling-out can use either the LASSO or Post-LASSO coefficients.

Both methods are supported by pdslasso.

Important PDS caveat: we can do inference on the causal variable(s),
but not on the selected high-dimensional controls. (The CHS method
partials them out, so the temptation is not there!)
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Using the LASSO to choose controls

Why can we use the LASSO to select controls even though the LASSO is
(in most scenarios) not model selection consistent?

Two ways to look at this:
Immunization property: moderate model selection mistakes of the
LASSO do not affect the asymptotic distribution of the estimator of
the low-dimensional parameters of interest (Belloni et al., 2012,
2014c). We can treat modelling the the nuisance component of our
structural model as a prediction problem.
The irrepresentable condition states that the LASSO will fail to
distinguish between two variables (one in the active set, the other
not) if they are highly correlated. These type of variable selection
mistakes are not a problem if the aim is to control for confounding
factors or estimate (“predict”) instruments.
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PDSLASSO: the pdslasso command

The PDSLASSO package has two commands, pdslasso and ivlasso. In
fact they are the same command, and the only difference is that pdslasso
has a more restrictive syntax.

Basic syntax
pdslasso depvar d_varlist (hd_controls_varlist)

[
if
][

in
][

, ...
]

with many options and features, including:
heteroskedastic- and cluster-robust penalty loadings.
LASSO or Sqrt-LASSO
support for Stata time-series and factor-variables
pweights and aweights
fixed effects and partialling-out unpenalized regressors
saving intermediate rlasso output
... and all the rlasso options
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Example: Donohue & Levitt (2001) (via BCH 2014)

Example: Donohue & Levitt (2001) on the effects of abortion on crime
rates using state-level data (via Belloni-Chernozhukov-Hansen JEP 2014).
50 states, data cover 1985-97.

Did legalization of abortion in the US around 1970 lead to lower crime
rates 20 years later? (Idea: woman more likely to terminate in difficult
circumstances; prevent this and the consequences are visible in the child’s
behavior when they grow up.)

Controversial paper, mostly hasn’t stood up to later scrutiny. But a good
example here because the PDS application is discussed in BCH (2014) and
because it illustrates the ease of use of factor variables to create
interactions.
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Example: Donohue & Levitt (2001) (via BCH 2014)

Donohue & Levitt look at different categories of crime; we look at the
property crime example. Estimation is in first differences.

yit is the growth rate in the property crime rate in state i , year t

dit is the growth rate in the abortion rate in state i , year t − 20 (appx)

And the controls come from a very long list:
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Controls in the Donohue & Levitt (2001) example

Controls (all state-level):
initial level and growth rate of property crime
growth in prisoners per capita, police per capita, unemployment rate, per
capita income, poverty rate, spending on welfare program at time t − 15,
gun law dummy, beer consumption per capita (original Donohue-Levitt list
of controls)
plus quadratic in lagged levels in all the above
plus quadratic state-level means in all the above
plus quadratic in initial state-level values in all the above
plus quadratic in initial state-level growth rates in all the above
plus all the above interacted with a quadratic time trend
year dummies (unpenalized)

In all, 336 high-dimensional controls and 12 unpenalized year dummies.

We use cluster-robust penalty loadings in the LASSOs and cluster-robust
SEs in the final OLS estimations of the structural equation.
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pdslasso command syntax

Usage in the Donohue-Levitt example:

pdslasso dep_var d_varlist (hd_controls_varlist),
partial(unpenalized_controls)
cluster(state_id)
rlasso

The unpenalized variables in partial(.) must be in the main
hd_controls_varlist.

cluster(.) implies cluster-robust penalty loadings and cluster-robust SEs
in the final OLS estimation. (These options can also be controlled
separately.)

The rlasso option of pdslasso displays the intermediate rlasso results
and also stores them for later replay and inspection.
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Levitt-Donohue example: pdslasso command line

pdslasso D.lpc_prop D.efaprop
(
c.prop0##c.prop0
c.Dprop0##c.Dprop0
c.(D.(xxprison-xxbeer))##c.(D.(xxprison-xxbeer))
c.(L.xxprison)##c.(L.xxprison)
c.(L.xxpolice)##c.(L.xxpolice)
...
(c.Dxxafdc150##c.Dxxafdc150)#(c.trend##c.trend)
(c.Dxxgunlaw0##c.Dxxgunlaw0)#(c.trend##c.trend)
(c.Dxxbeer0##c.Dxxbeer0)#(c.trend##c.trend)
i.year
)
, partial(i.year) cluster(statenum) rlasso
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Levitt-Donohue example: pdslasso output

Partialling out unpenalized controls...
1. (PDS/CHS) Selecting HD controls for dep var D.lpc_prop...
Selected: xxincome0 xxafdc150 c.Mxxincome#c.trend
2. (PDS/CHS) Selecting HD controls for exog regressor D.efaprop...
Selected: prop0 cD.xxprison#cD.xxbeer L.xxincome

Estimation results:

Specification:
Regularization method: lasso
Penalty loadings: cluster-lasso
Number of observations: 600
Number of clusters: 50
Exogenous (1): D.efaprop
High-dim controls (336): prop0 c.prop0#c.prop0 Dprop0 c.Dprop0#c.Dprop0

D.xxprison D.xxpolice D.xxunemp D.xxincome D.xxpover
D.xxafdc15 D.xxgunlaw D.xxbeer
cD.xxprison#cD.xxprison cD.xxprison#cD.xxpolice
cD.xxprison#cD.xxunemp cD.xxprison#cD.xxincome
cD.xxprison#cD.xxpover cD.xxprison#cD.xxafdc15
cD.xxprison#cD.xxgunlaw cD.xxprison#cD.xxbeer
...
c.Dxxbeer0#c.Dxxbeer0#c.trend
c.Dxxbeer0#c.Dxxbeer0#c.trend#c.trend

Selected controls (6): prop0 cD.xxprison#cD.xxbeer L.xxincome xxincome0
xxafdc150 c.Mxxincome#c.trend

Partialled-out controls (12): 86b.year 87.year 88.year 89.year 90.year 91.year
92.year 93.year 94.year 95.year 96.year 97.year
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Levitt-Donohue example: pdslasso output

Note at the beginning of the output the following message:

Partialling out unpenalized controls...
1. (PDS/CHS) Selecting HD controls for dep var D.lpc_prop...
Selected: xxincome0 xxafdc150 c.Mxxincome#c.trend
2. (PDS/CHS) Selecting HD controls for exog regressor D.efaprop...
Selected: prop0 cD.xxprison#cD.xxbeer L.xxincome

Specifying the rlasso option means you get to see the “rigorous” LASSO
results for Step 1 (selecting controls for the dependent variable y) and
Step 2 (selecting controls for the causal variable d):
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Levitt-Donohue example: pdslasso output

lasso estimation(s):

_pdslasso_step1
---------------------------------------------------

Selected | Lasso Post-est OLS
------------------+--------------------------------

xxincome0 | -0.0010708 -0.8691891
xxafdc150 | -0.0027622 -0.0147806

|
c.Mxxincome#|

c.trend | -5.4258229 -7.2534845
---------------------------------------------------

_pdslasso_step2
---------------------------------------------------

Selected | Lasso Post-est OLS
------------------+--------------------------------

prop0 | 0.2953010 0.3044819
|

cD.xxprison#|
cD.xxbeer | -1.4925825 -6.8662863

|
xxincome |

L1. | 16.3769883 26.0105200
---------------------------------------------------
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Levitt-Donohue example: pdslasso output

pdslasso reports 3 sets of estimations of the structural equation:
CHS using LASSO-orthogonalized variables
CHS using Post-LASSO-OLS-orthogonalized variables
PDS using all selected variables as controls

OLS using CHS lasso-orthogonalized vars
(Std. Err. adjusted for 50 clusters in statenum)

------------------------------------------------------------------------------
| Robust

D.lpc_prop | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

efaprop |
D1. | -.0645541 .044142 -1.46 0.144 -.1510708 .0219626

------------------------------------------------------------------------------

OLS using CHS post-lasso-orthogonalized vars
(Std. Err. adjusted for 50 clusters in statenum)

------------------------------------------------------------------------------
| Robust

D.lpc_prop | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

efaprop |
D1. | -.0628553 .0481347 -1.31 0.192 -.1571975 .031487

------------------------------------------------------------------------------
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Levitt-Donohue example: pdslasso output I

Reminder: we can do inference on the causal variable d (here, D.efaprop)
but not on the selected controls.
OLS with PDS-selected variables and full regressor set

(Std. Err. adjusted for 50 clusters in statenum)
---------------------------------------------------------------------------------------

| Robust
D.lpc_prop | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------------------+----------------------------------------------------------------
efaprop |

D1. | -.0897886 .056477 -1.59 0.112 -.2004815 .0209043
|

prop0 | .0088669 .0253529 0.35 0.727 -.0408239 .0585577
|

cD.xxprison#cD.xxbeer | -.1947112 2.542185 -0.08 0.939 -5.177302 4.78788
|

xxincome |
L1. | 21.28066 4.650744 4.58 0.000 12.16537 30.39595

|
xxincome0 | -15.71353 4.354251 -3.61 0.000 -24.24771 -7.179358
xxafdc150 | -.0264625 .0074138 -3.57 0.000 -.0409932 -.0119318

|
c.Mxxincome#c.trend | -9.449333 4.21689 -2.24 0.025 -17.71429 -1.18438

|
year |
87 | .0551684 .0357699 1.54 0.123 -.0149394 .1252762
88 | .1144515 .0698399 1.64 0.101 -.0224323 .2513353
89 | .2042385 .1017077 2.01 0.045 .004895 .403582
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Levitt-Donohue example: pdslasso output II

90 | .2827328 .1363043 2.07 0.038 .0155812 .5498844
91 | .3645207 .1675923 2.18 0.030 .0360458 .6929955
92 | .3915994 .2067296 1.89 0.058 -.0135831 .7967819
93 | .4761361 .2398321 1.99 0.047 .0060738 .9461985
94 | .58132 .2744475 2.12 0.034 .0434128 1.119227
95 | .6640497 .3108557 2.14 0.033 .0547837 1.273316
96 | .689488 .3448339 2.00 0.046 .0136261 1.36535
97 | .7730275 .3812726 2.03 0.043 .025747 1.520308

|
_cons | -.4087512 .2016963 -2.03 0.043 -.8040687 -.0134338

---------------------------------------------------------------------------------------
Standard errors and test statistics valid for the following variables only:

D.efaprop
------------------------------------------------------------------------------

62 / 86



pdslasso with rlasso option

The rlasso option stores the PDS LASSO estimations for later replay or
restore (NB: pdslasso calls rlasso to do this. The variables may be
temp vars, as here, in which case rlasso is also given the dictionary
mapping temp names to display names.)
. est dir

-----------------------------------------------------------
name | command depvar npar title

-------------+---------------------------------------------
_pdslasso_~1 | rlasso D.lpc_prop 3 lasso step 1
_pdslasso_~2 | rlasso D.efaprop 3 lasso step 2
-----------------------------------------------------------

. estimates replay _pdslasso_step1

. estimates replay _pdslasso_step2
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Choosing instruments: IV LASSO

Our model is:
yi = αdi + εi

As above, the causal variable of interest or “treatment” is di . We want to
obtain an estimate of the parameter α.

But we cannot use OLS because di is endogenous: E (diεi) 6= 0.

IV estimation is possible: we have available instruments zi ,j that are valid
(orthogonal to the error term): E (zijεi) 6= 0.

The problem is we have many instruments. The IV estimator is badly
biased when the number of instruments is large and/or the instruments are
only weakly correlated with the endogneous regressor(s).
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Choosing instruments: IV LASSO

Examples:
Uncertainty about the correct choice/specification of instruments.
Various alternatives available but theory provides no guidance.
Unknown non-linear relationship between the endogenous regressor
and instruments,

di = f (zi) + νi .

Use large set of transformation of zi to approximate the non-linear
form.

Idea: The first stage of 2SLS is a prediction problem. So we can use
LASSO-type methods.
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Choosing instruments: IV LASSO

Choose the instruments by using the LASSO on the first-stage regression
(di on LHS, IVs on RHS) and then two possible approaches, analogous to
PDS vs CHS in the exogenous case covered above:

PDS-type approach: Assemble instruments for each endogenous regressor,
and use the union of selected IVs in a standard IV estimation. Extends
straightforwardly to selecting from high-dimensional controls (as in basic
PDS). Also extends straightforwardly to models with both exogenous and
endogenous causal variables d .

CHS-type approach (Belloni et all 2012, CHS 2015): Use predicted value
d̂i from first-stage LASSO/Post-LASSO as an optimal instrument in a
standard IV estimation. Extends not-so-straightforwardly (multiple steps
involved) to selecting from high-dimensional controls and to models with
both exogenous and endogenous d (see the CHS paper).
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Example: Angrist-Kruger 1991 Quarter-of-birth IVs

Model is a standard Mincer-type wage equation

log(wage)i = αeduci + <controls> + εi

And we have the usual endogeneity (omitted variables bias) with educi
(years of education).

Angrist-Kruger (1991): compulsory school age laws vary from state to
state, so amount of education varies exogenously by state according to
when you were born and when the cutoff kicked in.

They estimated the above with various controls in the main equation (year
dummies, place-of-birth state dummies), and using as instrument the
quarter of birth plus interactions of QOB with YOB and POB dummies.
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Example: Angrist-Kruger 1991 Quarter-of-birth IVs

Problem: These interaction instruments in some specification were very
numerous (could number several hundred) and were weakly correlated with
years of education.

Paper is now very widely used and cited as examples of the "weak
instruments problem" and the "many weak instruments problem" in
particular.

LASSO solution: use the LASSO to select instruments.

Perfectly possible that the LASSO will select no instruments at all. This is
good! Means that there is evidence that the model is unidentified, or not
identified strongly enough to be able to do reliable evidence using standard
IV methods. Better to avoid using standard IV methods in this case.
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ivlasso command syntax

Basic syntax:

Basic syntax
ivlasso depvar d_varlist (hd_controls_varlist) (endog_d_varlist =
high_dimensional_IVs)

[
if
][

in
][

, ...
]

Usage in the Angrist-Kruger example:

ivlasso dep_var (hd_controls_varlist)
(endog_d_varlist = high_dimensional_IVs),
partial(unpenalized_controls)
fe
rlasso

where we illustrate the usage of state fixed effects.
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Angrist-Kruger example: ivlasso command line

Fixed effects (data are xtset by state), year dummies are unpenalized
controls, IVs are QOB and QOB interacted with year dummies, save the
rlasso results:

ivlasso lnwage (i.yob)
(educ=i.qob i.yob#i.qob), fe partial(i.yob) rlasso

Fixed effects, year dummies penalized, IVs are QOB and QOB interacted
with year dummies and state dummies:

ivlasso lnwage (ibn.yob)
(educ=ibn.qob ibn.yob#ibn.qob ibn.pob#ibn.qob), fe

Note the use of base factor variables. In effect we let the LASSO choose
the base categories.
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Angrist-Kruger example: ivlasso output

Fixed effects transformation...
1. (PDS/CHS) Selecting HD controls for dep var lnwage...
Selected:
3. (PDS) Selecting HD controls for endog regressor educ...
Selected: 30bn.yob 31.yob 32.yob 33.yob 36.yob 37.yob 38.yob 39.yob
5. (PDS/CHS) Selecting HD controls/IVs for endog regressor educ...
Selected: 30bn.yob 31.yob 32.yob 37.yob 38.yob 39.yob 1bn.qob 4.qob

30bn.yob#1bn.qob 47.pob#4.qob
6a. (CHS) Selecting lasso HD controls and creating optimal IV for endog regressor educ...
Selected: 30bn.yob 31.yob 32.yob 37.yob 38.yob 39.yob
6b. (CHS) Selecting post-lasso HD controls and creating optimal IV for endog regressor educ...
Selected: 30bn.yob 31.yob 32.yob 37.yob 38.yob 39.yob
7. (CHS) Creating orthogonalized endogenous regressor educ...
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Angrist-Kruger example: ivlasso output

Estimation results:

Specification:
Regularization method: lasso
Penalty loadings: homoskedastic
Number of observations: 329,509
Number of fixed effects: 51
Endogenous (1): educ
High-dim controls (10): 30bn.yob 31.yob 32.yob 33.yob 34.yob

35.yob 36.yob 37.yob 38.yob 39.yob
Selected controls, PDS (8): 30bn.yob 31.yob 32.yob 33.yob 36.yob

37.yob 38.yob 39.yob
Selected controls, CHS-L (6): 30bn.yob 31.yob 32.yob 37.yob 38.yob 39.yob
Selected controls, CHS-PL (6): 30bn.yob 31.yob 32.yob 37.yob 38.yob 39.yob
High-dim instruments (248): 1bn.qob 2.qob 3.qob 4.qob 30bn.yob#1bn.qob

30bn.yob#2.qob
...
56.pob#1bn.qob 56.pob#2.qob 56.pob#3.qob
56.pob#4.qob

Selected instruments (4): 1bn.qob 4.qob 30bn.yob#1bn.qob
47.pob#4.qob

Note that out of 248 instruments, only 4 were selected. Also note how the
LASSO chose the base categories.
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Angrist-Kruger example: ivlasso output

Results using the optimal instruments (LASSO and Post-LASSO) methods:
Structural equation (fixed effects, #groups=51):

IV using CHS lasso-orthogonalized vars
------------------------------------------------------------------------------

lnwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

educ | .0880653 .0191934 4.59 0.000 .0504469 .1256837
------------------------------------------------------------------------------

IV using CHS post-lasso-orthogonalized vars
------------------------------------------------------------------------------

lnwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

educ | .0873329 .0182045 4.80 0.000 .0516527 .123013
------------------------------------------------------------------------------
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Angrist-Kruger example: ivlasso output

Results using the PDS methodology: only the 4 variables selected as
instruments (1bn.qob, 4.qob, 30bn.yob#1bn.qob and 47.pob#4.qob);
note also that nearly all the year dummies were selected by the LASSO as
controls,
IV with PDS-selected variables and full regressor set
------------------------------------------------------------------------------

lnwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

educ | .0872734 .0181917 4.80 0.000 .0516183 .1229285
|

yob |
30 | .0287962 .007576 3.80 0.000 .0139474 .0436449
31 | .020713 .0057296 3.62 0.000 .0094832 .0319427
32 | .0139227 .0049638 2.80 0.005 .0041939 .0236515
33 | .010831 .0046016 2.35 0.019 .001812 .01985
36 | -.0067316 .0045436 -1.48 0.138 -.0156368 .0021737
37 | -.0131574 .0049521 -2.66 0.008 -.0228634 -.0034513
38 | -.0155679 .0058099 -2.68 0.007 -.0269552 -.0041806
39 | -.0271007 .0063086 -4.30 0.000 -.0394653 -.0147361

------------------------------------------------------------------------------
Standard errors and test statistics valid for the following variables only:

educ
------------------------------------------------------------------------------
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Installation

Both LASSOPACK and PDSLASSO are available through SSC:
ssc install lassopack
ssc install pdslasso

To get the latest stable version from our website, check the installation
instructions at https://statalasso.github.io/installation/.

75 / 86

https://statalasso.github.io/installation/


Summary I

Machine learning/Penalized regression
ML provides wide set of flexible methods focused on prediction and
classification problems.
Penalized regression outperforms OLS in terms of prediction due to
bias-variance-tradeoff.
LASSO is just one ML method, but has some advantages: closely
related to OLS, sparsity, well-developed theory, etc.

The package LASSOPACK

implements penalized regression methods: LASSO, elastic net, ridge,
square-root LASSO, adaptive LASSO.
uses fast path-wise coordinate descent algorithms
three commands for three different penalization approaches:
cross-validation (cvlasso), information criteria (lasso2) and
‘rigorous’ (theory-driven) penalization (rlasso).
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Summary II

Causal inference
Distinction between parameters of interest and high-dimensional set
of controls/instruments.
General framework allows for causal inference with low-dimensional
parameters robust to misspecification; and avoids problems associated
with model selection using significance testing.
But there’s a price: the framework is designed for inference on
low-dim parameters only.

The package PDSLASSO

includes pdslasso and ivlasso for selection of controls
and/instruments using ‘rigorous’ LASSO and Sqrt-LASSO.
supports weak-identification robust inference using sup-score test.
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Recommended resources

NBER Summer Institute 2013: Econometric Methods for High-Dimensional
Data, with video lectures by Victor Chernozhukov and Christian Hansen,
among others

Two free textbooks: An Introduction to Statistical Learning (non-technical)
and Elements of Statistical Learning (more advanced).

Video lectures on Statistical Learning by Trevor Hastie & Rob Tibshirani
(based on An Introduction to Statistical Learning)

See References and our website https://statalasso.github.io/ for
more material.
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Appendix: Boston house prices

Variable descriptions

Name Description
crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft.
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centres
rad index of accessibility to radial highways
tax full-value property-tax rate per $10,000
pratio pupil-teacher ratio by town
b 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
lstat % lower status of the population
medv Median value of owner-occupied homes in $1000’s

Go back.
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