f_able: Estimation of marginal effects with transformed covariates Taking Margins a step further

Rios-Avila, Fernando¹

¹friosavi@levy.org Levy Economics Institute

UK Stata Conference, September 2020

Rios-Avila (Levy) Stata 2020 1/23

Table of Contents

- Introduction
- 2 How to estimate marginal/partial effects
- Margins and Factor
- 4 Limitations
- 5 f_able. Going Beyond margins
- Conclusions

Rios-Avila (Levy) Stata 2020 2/23

Introduction

• Marginal effects tells us how a dependent variable (outcome) y changes when an independent variable x changes, assuming everything else constant (e and z's).

$$y = b_0 + b_1 x + b_2 z + e$$

 For linear models, with no interactions or polynomials, marginal effects are equal to their coefficients:

$$\frac{dy}{dx} = b_1 \& \frac{dy}{dz} = b_2$$

• However, when there are interactions, polynomials, or other transformations, further work is needed.

Rios-Avila (Levy) Stata 2020 3/23

Estimating Marginal effects

 When interactions or polynomials are used, marginal effects should be obtained estimating equation derivatives:

$$y = b_0 + b_1 x + b_2 x^2 + b_3 z + b_4 z x + e$$

 $\frac{dy}{dx} = b_1 + 2b_2 x + b_4 z$
 $\frac{dy}{dz} = b_3 + b_4 x$

- Main difference with simple linear model?
 - Marginal effects no longer constant
 - Coefficients alone are not useful
 - Derivatives are needed to obtain the effects.

Estimating Marginal effects: Non-linear model

• When the model is nonlinear, the problem is :

$$y = G(b_0 + b_1x + b_2x^2 + b_3z + b_4zx)$$
$$y = G(XB)$$
$$\frac{dy}{dx} = \frac{dG(XB)}{d(XB)} * (b_1 + 2b_2x + b_4z)$$

• In Addition to obtaining derivatives of XB wrt x, we also need to find the derivative of G() wrt XB

Rios-Avila (Levy) Stata 2020 5 / 23

Estimating Marginal effects

How to proceed in this case? what to report? There are many options:

$$APE = E\left(\frac{dy}{dx}\right)$$

$$PEA = \frac{dy}{dx}|X = \bar{x}; z = \bar{z}$$

$$PE_at_X = \frac{dy}{dx}|X = X; z = Z$$

Or report "ALL" effects for each observation in the data.

Then "simply" estimate SE.

Rios-Avila (Levy) Stata 2020 6/23

Empirical Estimation of Marginal effects

- Before Stata 11, estimation of marginal effects for models with interactions was "hard".
- You needed to create the variables "by hand", and adjust marginal effects on your own:
 - . webuse dui, clear
 - . gen fines2=fines*fines
 - . reg citations fines fines2
 - . sum fines2
 - . lincom _b[fines]+2*_b[fines2]*'r(mean)'
- Otherwise, using the old -mfx- or the new -margins- would give you incorrect results.
- why? because Stata does not recognize that $fines2 = fines^2$. Fines2 is assumed constant.

Rios-Avila (Levy) f_able Stata 2020 7/23

Margins and Factor notation, and limitations

- Stata 11 introduced the use of factor notation, and margins.
- Factor notation (c. # i.) facilitates adding interactions to models, so that correct marginal effects can be estimated using margins
- Marginal effects for the previous model can be easily estimated:
 - . webuse dui, clear
 - . reg citations fines c.fines#c.fines
 (where c.fines#c.fines=fines^2)
 - . margins, dydx(fines)
- Internally, margins understand c.fines#c.fines depends on fines. (And probably estimates analytical derivatives to obtain the PE).
- when nonlinear models are involved margins calls on predict if one is interested on an outcome different from the linear index.

How margins Works?

Limitations of margins

- What If one is interested in using other variable transformations, for example: fines⁻⁵, log(fines), splines, fracpoly, etc
- In any of these cases, margins will not work.
- why? Because these variables will have to be created manually, and Margin will not recognized they all depend on fines.
- One solution, estimate the derivatives manually, and calculate corresponding SE.
- Same as before factor notation.

Rios-Avila (Levy) Stata 2020 10 / 23

Why does it fail?

Beyond factor notation

- Some other commands in Stata are already able to control for "unusual" variable transformations (nl and npregress series).
- However, for any command being able to use those capabilities, one needs to solve three problems:
 - Store information of how a variable is created.
 - Identify that a variable is a constructed variable.
 - Use that information to update constructed variables, and obtain partial effects.
- Here is where f_able helps solving these problems.

How does f_able works?

f_able package: fgen and frep

. ssc install f_able

To solve the first problem, I propose fgen and frep. These commands are wrappers
around generate and replace that stores how the variable was generated, as a label or
note.

f_able package: f_able

• To solve the second problem, I propose f_able. This is a post estimation command that identifies what variables in a model are "constructed" variables, adding information to any previously estimated model, and redirecting the predict sub-command to f_able_p.

f_able package: f_able_p

- To solve the third problem, I propose f_able_p. This passive command uses the information left by f_able to update all constructed values when the original variable changes, before using predict for the margins estimation.
- Only difference, when calling margins we need to include the option nochain, so numerical derivatives are used.

f_able syntax

```
* Step 1: Generate variables
fgen/frep fx1= "gen-able" function of x's
fgen/frep fx2= "gen-able" function of x's
fgen/frep fxk= "gen-able" function of x's
* Step 2: Model estimation: Any model
* Step 3: Declare constructed variables:
f_able, nl(fx1 fx2 ... fxk)
* Step 4: Margins
margins, dydx(x1 x2 ..) nochain numerical [other options]
* Step 5: Additional post estimation (if no standard errors produced)
f_symev/f_symrv
```

Example: A model of Charity

```
use charity, clear
fgen lavggift=log(avggift)
fgen lweekslast=log(weekslast)
fgen lmailsyear=log(mailsyear)
fgen lpropresp=log(propresp)
*Simple OLS
reg gift resplast weekslast mailsyear propresp avggift , robust
margins, dydx(resplast weekslast mailsyear propresp avggift) post
est sto model1
*OLS with LOG(Var)
reg gift resplast weekslast mailsyear propresp avggift 1*, robust
f_able, nl(lavggift lweekslast lmailsyear lpropresp)
margins, dydx(resplast weekslast mailsyear propresp avggift) nochain post
est sto model2
```

Example: A model of Charity

```
*Poisson with LOG(var)
poisson gift resplast weekslast mailsyear propresp avggift 1*, robust
f_able, nl(lavggift lweekslast lmailsyear lpropresp)
margins, dydx(resplast weekslast mailsyear propresp avggift) ///
nochain numerical post
est sto model3
*Tobit with LOG(var)
tobit gift resplast weekslast mailsyear propresp avggift 1*, vce(robust) 11(0)
f_able, nl(lavggift lweekslast lmailsyear lpropresp)
margins, dydx(resplast weekslast mailsyear propresp avggift) ///
nochain numerical predict(ystar(0,.)) post
est sto model4
```

Example: A model of Charity

. esttab model1 model2 model3 model4, mtitle("S OLS" "OLS w/Logs" "Poisson" "Tobit") /// se star(* .1 ** .05 *** .01)

	(1) S OLS	(2) OLS w/Logs	(3) Poisson	(4) Tobit
resplast	1.514**	3.527***	2.743***	3.094***
	(0.719)	(0.990)	(0.634)	(0.605)
weekslast	-0.0186***	0.0755***	0.105***	0.0953***
	(0.00590)	(0.0212)	(0.0178)	(0.0182)
mailsyear	1.992***	0.605	1.241***	0.913***
	(0.396)	(0.464)	(0.339)	(0.309)
propresp	11.64***	15.67***	11.08***	14.12***
	(1.283)	(1.942)	(1.224)	(1.170)
avggift	0.0199	0.847***	0.437***	0.394***
	(0.0176)	(0.0753)	(0.0198)	(0.0327)
N	4268	4268	4268	4268

Standard errors in parentheses

* p<.1, ** p<.05, *** p<.01

Conclusions

- This presentation introduces the package f_able, as a post estimation command that enables margins to estimate marginal effects with transformed covariates
- This strategy has some limitations.
 - It can be slow
 - it may be less precise because it relies on FORCED numerical differentiation.
 - Some commands may require additional "margin" options (nochain & numerical) and post estimation adjustment.
- However, it can provide researchers with a simple tool to make the best of more flexible model specifications.

For more examples see the help file "ssc install f_able" Working paper available at: https://bit.ly/rios_fable

Thank you!

Rios-Avila (Levy) f.able Stata 2020 22/23

References

Rios-Avila, Fernando. (forthcoming). "f_able: Estimation of marginal effects for models with alternative variable transformations". The Stata Journal

Rios-Avila (Levy) Stata 2020 23 / 23