Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000	0000000	000	000000	00	0

Panel Unit Root Tests with Structural Breaks The 27th UK Stata Conference

Pengyu Chen¹, Yiannis Karavias¹, Elias Tzavalis²

¹Birmingham Business School University of Birmingham, UK

²Department of Economics Athens University of Economics and Business, Greece

September 10, 2021

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Panel Unit Root Tests with Structural Breaks

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000	0000000	000	000000	00	0

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Panel Unit Root Tests with Structural Breaks

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
•00					

4 Examples

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Panel Unit Root Tests with Structural Breaks

Motivation 0●0	Econometric Model	Syntax 000	Examples 000000	Conclusion	References 0
Motivation					

- Structural breaks are shocks which are exogenous to the model but have a lasting effect.
- They mislead unit root tests to accept the null of unit root when in fact it is stationary.
- Ignorance of structural breaks can distort power of tests and lead to deceptive conclusions.
- In real world, structural breaks can be caused by many factors, including changes in policy regime or important worldwide events, e.g., the Great Depression, World War II, oil price shock, Covid19.

Motivation 00●	Econometric Model	Syntax 000	Examples 000000	Conclusion	References 0
Contribution	າ				

- **xtbunitroot** implements the econometric method suggested by Karavias and Tzavalis (2014).
- It performs panel unit root tests that allow for breaks in the intercepts of the individual series or in both intercepts and linear trends.
- xtbunitroot allows for one or two breaks at either known or unknown dates.
- It is the first Stata command which allows for panel unit root tests with structural breaks and can be viewed as a complement to the official **xtunitroot** command.

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
	•000000				

3 Syntax

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Panel Unit Root Tests with Structural Breaks

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
	0●000000	000	000000	00	0
Underlying	models				

• M1 model tests against a structural break in the intercepts of the series:

$$y_{i,t} = \varphi y_{i,t-1} + (1-\varphi)[\alpha_{1,i}I(t \le b) + \alpha_{2,i}I(t > b)] + u_{i,t}$$

- $\alpha_{1,i}$ and $\alpha_{2,i}$ are the fixed effects before and after the break.
- The break happens on date b and the notation $I(\cdot)$ denotes indicator function.

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000	00●00000	000	000000		0
Underlying	models				

• M2 model tests against a structural break in both intercepts and linear trends:

$$\begin{aligned} y_{i,t} &= \varphi y_{i,t-1} + \varphi [\beta_{1,i} I(t \le b) + \beta_{2,i} I(t > b)] \\ &+ (1 - \varphi) [\alpha_{1,i} I(t \le b) + \alpha_{2,i} I(t > b)] \\ &+ (1 - \varphi) [\beta_{1,i} t I(t \le b) + \beta_{2,i} t I(t > b)] + u_{i,t} \end{aligned}$$

- $\beta_{1,i}$ and $\beta_{2,i}$ are coefficients of linear trends before and after the break.
- The break is allowed to be in $I_1 = \{1, 2, ..., T 1\}$ for M1 and in $I_2 = \{2, ..., T 2\}$ for M2.
- Both models can be extended to the case of two structural breaks.

Motivation	Econometric Model 000●0000	Syntax 000	Examples 000000	Conclusion	References 0
Hypothesis					

- The null hypothesis H₀: All panel time series are unit root processes without breaks(φ = 1).
- The alternative hypothesis H₁: Some or all of the panel time series are stationary processes with breaks(φ < 1).
- Structural breaks can only occur under the alternative hypothesis (Zivot and Andrews, 1992).
- The alternative hypothesis is homogeneous across different individuals but it is also evidenced that the test has power against heterogeneous alternatives (Karavias and Tzavalis, 2016).

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000	0000●000	000	000000	00	0
Test Statist Known breaks	ics				

• For a given break date b, autoregressive parameter φ can be estimated with the following pooled least squares estimator:

$$\widehat{\varphi} = \left(\sum_{i=1}^{N} y'_{i,-1} Q^{b}_{m} y_{i,-1}\right)^{-1} \left(\sum_{i=1}^{N} y'_{i,-1} Q^{b}_{m} y_{i}\right), \ m = \{M1, M2\}$$

- The orthogonal projection matrix Q_m^b is defined as $Q_m^b = I_T X_m^b (X_m^{b\prime} X_m^b)^{-1} X_m^{b\prime}$, where $X_{M1}^b = (e_1, e_2)$ and $X_{M2}^b = (e_1, e_2, \tau_1, \tau_2)$.
- Karavias and Tzavalis (2014) show that the estimator $\widehat{\varphi}$ is inconsistent and must be modified.

Motivation 000	Econometric Model 00000●00	Syntax 000	Examples 000000	Conclusion 00	References 0
Test Stat	istics				
Known brea	aks				

• The inconsistency of $\widehat{\varphi}$ is given by:

$$B^{b} = \underset{N o \infty}{plim} (\widehat{arphi} - 1) = rac{tr[\Lambda' Q_{m}^{b}]}{tr(\Lambda' Q_{m}^{b}\Lambda)}, ext{ for } m = \{M1, M2\}$$

- $T \times T$ matrix Λ is defined as: $[\Lambda]_{r,c} = 1$ if r > c and 0 otherwise, where $r, c \in \{1, ..., T\}$.
- The consistent test statistics is:

$$Z(b) = \sqrt{N} [C^{b}(k_{u}, \sigma_{u}^{2})]^{-\frac{1}{2}} (\widehat{\varphi} - 1 - B^{b}) \xrightarrow{L} N(0, 1)$$

• Assume errors are not serially correlated, the estimated variance is:

$$C^{b}(k_{u},\sigma_{u}^{2}) = \{k \sum_{j=1}^{T} [A^{b}]_{j,j}^{2} + 2\sigma_{u}^{4} tr(A^{b^{2}})\} \{\sigma_{u}^{2} tr(\Lambda' Q_{m}^{b} \Lambda)\}^{-2}$$

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000	000000●0	000	000000	00	0
Test Statist Known breaks	ics				

- The consistent estimators of parameters k_u and σ_u^2 are given by Harris and Tzavalis (2004).
- For heteroskedastic errors, $C^b(k_u, \sigma_u^2)$ is replaced with

$$\bar{C}^{b}(k_{u},\sigma_{u}^{2}) = \frac{1}{N} \sum_{i=1}^{N} \{ [k_{i} \sum_{j=1}^{T} [A^{b}]_{j,j}^{2} + 2\sigma_{u,i}^{4} tr(A^{b^{2}})] [\sigma_{u,i}^{2} tr(\Lambda' Q_{m}^{b} \Lambda)]^{-2} \}$$

• For independently, normally distributed errors:

$$C^b = 2tr[(A^b)^2]/tr(\Lambda'Q^b_m\Lambda)^2$$

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Panel Unit Root Tests with Structural Breaks

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000	0000000●	000	000000	00	0
Test Statist Unknown brea	ics ^{Iks}				

 If the break date is unknown, one break point b_{min} is chosen which minimize test statistic over all possible break dates (Zivot and Andrews, 1992)

$$\min \mathcal{Z} = \min_{b \in I_m} Z(b) \text{ for } m = \{M_1, M_2\}$$

• Following Karavias and Tzavalis (2019), a bootstrap algorithm is implemented to derive the critical values and p-values of min \mathcal{Z} .

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000	0000000	000	000000	00	0

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Panel Unit Root Tests with Structural Breaks

Motivation 000	Econometric Model	Syntax 0●0	Examples 000000	Conclusion	References 0
Basic Synta	x				

xtbunitroot varname [if] [in] [, trend known(integer integer) unknown(numlist integer) normal csd het nobootstrap]

- Dataset must be xtset before using the command.
- If no option is specified, the default will be M_1 model with a single break in the intercept, at an unknown date with 100 bootstrap replications.

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000		00●	000000	00	0
Main Option	ns				

- <u>kn</u>own(*break1 break2*)
 - the number and places of breaks. This option must be used when the dates of the breaks are known.
- <u>unk</u>nown(*numbreaks numboot*)
 - the number of unknown breaks and the number of bootstrap replications.
- <u>tr</u>end
 - the common breaks affect both intercepts and trends.
- <u>nor</u>mal
 - the errors are normally distributed.
- csd
 - demeaning procedure for cross-sectionally dependent errors.

- het
 - errors are cross-sectionally heteroskedastic.

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000	0000000	000	00000	00	0

1 Motivation

2 Econometric Model

3 Syntax

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Panel Unit Root Tests with Structural Breaks

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000		000	0●0000	00	0
Empirical e	xamples				

- To examine the stationarity of banking variable: returns on assets.
- The quarterly data is collected from the Federal Deposit Insurance Corporation (FDIC), composed of a random sample of 500 banks, from 2018q3 to 2020q4.
- This period includes the COVID19 pandemic which may have caused breaks in the intercepts and trends of the series (started in 2020q1).

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000		000	00●000	00	0
Results					

- First assume that the date of the break is known to be 2020q1.
- Errors are assumed to be normally distributed but cross-sectionally dependent.
- The output below shows that the null hypothesis of non-stationarity is rejected at 1% significance level.

Motivation 000	Econometric Model	Syntax 000	Examples 000●00	Conclusion	References 0
Output					

```
. use xtbunitroot_example.dta, clear
. xtset fed rssd time
       panel variable: fed_rssd (strongly balanced)
        time variable: time, 1 to 10
                delta:
                       1 unit
. xtbunitroot roa, known(7) normal csd
Karavias and Tzavalis (2014) panel unit root test for roa
HO: All panel time series are unit root processes
H1: Some or all of the panel time series are stationary processes
Number of panels:
                                  500
                                            Number of periods:
                                                                      10
Number of breaks:
                                  1
Cross-section dependence:
                                  Yes
                                            Linear time trend:
                                                                      No
Cross-section heteroskedasticity: No
                                            Normal errors:
                                                                      Yes
                                            Known break date(s):
Result: the null is rejected
                                                                      7
                    Statistic
                                5% Asymtotic critical-value
                                                                 p-value
 Z-statistic
                    -15.3360
                                         -1.6450
                                                                 0.0000
```

 Pengyu Chen, Yiannis Karavias, Elias Tzavalis
 September 10, 2021

 Panel Unit Root Tests with Structural Breaks
 20 / 26

・ロト ・同ト ・ヨト ・ヨト

э

Motivation 000	Econometric Model	Syntax 000	Examples 0000€0	Conclusion	References 0
Output					

• Secondly the break date is assumed to be unknown and determined from the data.

. xtbunitroot roa, unknown(1) normal csd Karavias and Tzavalis (2014) panel unit root test for roa

H0: All panel time series are unit root processes H1: Some or all of the panel time series are stationary processes

Number of panels: Number of breaks:		500 1	Number of periods: Bootstrap replication	10 ons: 100
Cross-section depend Cross-section hetero Result: the null is	dence: oskedasticity: rejected	Yes No	Linear time trend: Normal errors: Estimated break date	No Yes e(s): 6
	Statistic 5%	& Bootstrap	critical-value	p-value
minZ-statistic	-25.1273	9.3	3046	0.0000

< □ > < ^[] > .

Motivation 000	Econometric Model	Syntax 000	Examples 00000●	Conclusion	References 0
Output					

- Similarly the null hypothesis is rejected at 1% significance level.
- When the break date is unknown, the command reports the estimated break date: observation 6 in this case, which corresponds to 2019q4.
- Result: Returns on assets are found to be stationary with structural breaks in the intercepts.

Motivation Econometr	ic Model Syntax	Examples	Conclusion	References
			•0	

1 Motivation

2 Econometric Model

3 Syntax

4 Examples

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Panel Unit Root Tests with Structural Breaks

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
000		000	000000	○●	0
Conclusion					

- This presentation has introduced a new Stata command **xtbunitroot** suggested by Karavias and Tzavalis (2014).
- The test is more powerful when structural break exists in intercepts and trends.
- It allows for one or two breaks under the alternative which can be either known or unknown.
- The command can be downloaded in stata using: ssc install xtbunitroot

Motivation 000	Econometric Model	Syntax 000	Examples 000000	Conclusion	References 0
References					

- Harris, Richard DF and Elias Tzavalis (2004). "Testing for unit roots in dynamic panels in the presence of a deterministic trend: re-examining the unit root hypothesis for real stock prices and dividends". In: *Econometric Reviews* 23.2, pp. 149–166. ISSN: 0747-4938.
- Karavias, Yiannis and Elias Tzavalis (2014). "Testing for unit roots in short panels allowing for a structural break". In: *Computational Statistics & Data Analysis* 76, pp. 391–407. ISSN: 0167-9473.
- (2016). "Local power of fixed T panel unit root tests with serially correlated errors and incidental trends". In: *Journal of Time Series Analysis* 37.2, pp. 222–239. ISSN: 0143-9782.
- (2019). "Generalized fixed T panel unit root tests". In: Scandinavian Journal of Statistics 46.4, pp. 1227–1251. ISSN: 0303-6898.
- Zivot, Eric and Donald W K Andrews (1992). "Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis". In: *Journal of business & economic statistics* 20.1, pp. 25–44. ISSN: 0735-0015.

< 17 > <

Motivation	Econometric Model	Syntax	Examples	Conclusion	References
					•

Thanks!

Pengyu Chen, Yiannis Karavias, Elias Tzavalis

Panel Unit Root Tests with Structural Breaks

September 10, 2021

26 / 26