
Edit LATEX BibTEX/biber make-index

2021 UK Stata Conference

Computing score functions
numerically using Mata

Álvaro A. Gutiérrez-Vargas (@alvarogutyerrez 8, �, °)
½ Research Centre for Operations Research and Statistics (ORStat)
Faculty of Economics and Business
KU Leuven, Belgium

https://twitter.com/alvarogutyerrez
https://github.com/alvarogutyerrez
https://www.linkedin.com/in/alvarogutierrezvargas/
https://feb.kuleuven.be/research/decision-sciences-and-information-management/orstat/orstat

1 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions

8 Bibliography
1 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short:

We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?:

Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?:

Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?:

We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:

Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?)

, but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

1 Introduction

I In short: We will see a workaround that allows us to compute robust variance-
covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command
fails to provide them.

I When will I need this?: Only when working with models that do not meet the
linear-form restrictions. Otherwise, ml does it automatically.

I Why is this relevant?: Because we cannot longer only type “robust” to imple-
ment robust/clustered corrected variance-covariance matrices in our programs.

I How can we solve such problem?: We will numerically approximate the score
functions using Mata’s deriv() function (see [R] deriv and Gould (2018))
squeezing our log-likelihood function and using them to compute sandwich
variance estimators.

I The talk seems off from my interests. Should I grab a coffee instead?:
Well... maybe (?), but you will lose some “very” interesting tricks about nu-
merical derivatives using Mata that might be useful someday!

2 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

2 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions

8 Bibliography
3 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

2 The ml command

I The ml command allows us to fit models using Maximum Likelihood.

I The command has different types of evaluators (e.g., lf-family, gf-family,
and d-family) which vary in terms of what kind of models they can be fit.

I In particular: we will focus on models where the log-likelihood function
does not meet the linear-form restrictions, which can be fitted using the
d-family of evaluators.

I The minimum requirement to implement a model using the ml command
is to write its log-likelihood function (i.e., d0 evaluator).

I Faster methods can be implemented depending on what we provide the
ml command with:

• d0 evaluator = Log-likelihood
• d1 evaluator = Log-likelihood + Gradient
• d2 evaluator = Log-likelihood + Gradient + Hessian

4 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

2 The ml command

I The ml command allows us to fit models using Maximum Likelihood.
I The command has different types of evaluators (e.g., lf-family, gf-family,

and d-family) which vary in terms of what kind of models they can be fit.

I In particular: we will focus on models where the log-likelihood function
does not meet the linear-form restrictions, which can be fitted using the
d-family of evaluators.

I The minimum requirement to implement a model using the ml command
is to write its log-likelihood function (i.e., d0 evaluator).

I Faster methods can be implemented depending on what we provide the
ml command with:

• d0 evaluator = Log-likelihood
• d1 evaluator = Log-likelihood + Gradient
• d2 evaluator = Log-likelihood + Gradient + Hessian

4 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

2 The ml command

I The ml command allows us to fit models using Maximum Likelihood.
I The command has different types of evaluators (e.g., lf-family, gf-family,

and d-family) which vary in terms of what kind of models they can be fit.
I In particular: we will focus on models where the log-likelihood function

does not meet the linear-form restrictions, which can be fitted using the
d-family of evaluators.

I The minimum requirement to implement a model using the ml command
is to write its log-likelihood function (i.e., d0 evaluator).

I Faster methods can be implemented depending on what we provide the
ml command with:

• d0 evaluator = Log-likelihood
• d1 evaluator = Log-likelihood + Gradient
• d2 evaluator = Log-likelihood + Gradient + Hessian

4 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

2 The ml command

I The ml command allows us to fit models using Maximum Likelihood.
I The command has different types of evaluators (e.g., lf-family, gf-family,

and d-family) which vary in terms of what kind of models they can be fit.
I In particular: we will focus on models where the log-likelihood function

does not meet the linear-form restrictions, which can be fitted using the
d-family of evaluators.

I The minimum requirement to implement a model using the ml command
is to write its log-likelihood function (i.e., d0 evaluator).

I Faster methods can be implemented depending on what we provide the
ml command with:

• d0 evaluator = Log-likelihood
• d1 evaluator = Log-likelihood + Gradient
• d2 evaluator = Log-likelihood + Gradient + Hessian

4 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

2 The ml command

I The ml command allows us to fit models using Maximum Likelihood.
I The command has different types of evaluators (e.g., lf-family, gf-family,

and d-family) which vary in terms of what kind of models they can be fit.
I In particular: we will focus on models where the log-likelihood function

does not meet the linear-form restrictions, which can be fitted using the
d-family of evaluators.

I The minimum requirement to implement a model using the ml command
is to write its log-likelihood function (i.e., d0 evaluator).

I Faster methods can be implemented depending on what we provide the
ml command with:

• d0 evaluator = Log-likelihood
• d1 evaluator = Log-likelihood + Gradient
• d2 evaluator = Log-likelihood + Gradient + Hessian

4 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions

8 Bibliography
5 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [1]

I We say that a likelihood function meets the linear-form restrictions when:

• The log-likelihood contribution can be calculated separately for each ob-
servation.

• The sum of the individual contributions equals the overall log-likelihood.

I Take, for example, the normal linear regression model:

lnL =
N∑

i=1
[ln {φ (yi − xiβ) /σ} − ln σ]

I This model does meet the Linear-form Restriction!
. list in 1/3, sep(1)

y x1 x2

1. -1.09811 -.3591099 .3387246

2. -1.742268 .1902105 -1.498368

3. 1.273768 -1.602709 1.034604

6 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [1]

I We say that a likelihood function meets the linear-form restrictions when:

• The log-likelihood contribution can be calculated separately for each ob-
servation.

• The sum of the individual contributions equals the overall log-likelihood.

I Take, for example, the normal linear regression model:

lnL =
N∑

i=1
[ln {φ (yi − xiβ) /σ} − ln σ]

I This model does meet the Linear-form Restriction!
. list in 1/3, sep(1)

y x1 x2

1. -1.09811 -.3591099 .3387246

2. -1.742268 .1902105 -1.498368

3. 1.273768 -1.602709 1.034604

6 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [1]

I We say that a likelihood function meets the linear-form restrictions when:

• The log-likelihood contribution can be calculated separately for each ob-
servation.

• The sum of the individual contributions equals the overall log-likelihood.

I Take, for example, the normal linear regression model:

lnL =
N∑

i=1
[ln {φ (yi − xiβ) /σ} − ln σ]

I This model does meet the Linear-form Restriction!
. list in 1/3, sep(1)

y x1 x2

1. -1.09811 -.3591099 .3387246

2. -1.742268 .1902105 -1.498368

3. 1.273768 -1.602709 1.034604

6 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [1]

I We say that a likelihood function meets the linear-form restrictions when:

• The log-likelihood contribution can be calculated separately for each ob-
servation.

• The sum of the individual contributions equals the overall log-likelihood.

I Take, for example, the normal linear regression model:

lnL =
N∑

i=1
[ln {φ (yi − xiβ) /σ} − ln σ]

I This model does meet the Linear-form Restriction!
. list in 1/3, sep(1)

y x1 x2

1. -1.09811 -.3591099 .3387246

2. -1.742268 .1902105 -1.498368

3. 1.273768 -1.602709 1.034604

6 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [1]

I We say that a likelihood function meets the linear-form restrictions when:

• The log-likelihood contribution can be calculated separately for each ob-
servation.

• The sum of the individual contributions equals the overall log-likelihood.

I Take, for example, the normal linear regression model:

lnL =
N∑

i=1
[ln {φ (yi − xiβ) /σ} − ln σ]

I This model does meet the Linear-form Restriction!

. list in 1/3, sep(1)

y x1 x2

1. -1.09811 -.3591099 .3387246

2. -1.742268 .1902105 -1.498368

3. 1.273768 -1.602709 1.034604

6 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [1]

I We say that a likelihood function meets the linear-form restrictions when:

• The log-likelihood contribution can be calculated separately for each ob-
servation.

• The sum of the individual contributions equals the overall log-likelihood.

I Take, for example, the normal linear regression model:

lnL =
N∑

i=1
[ln {φ (yi − xiβ) /σ} − ln σ]

I This model does meet the Linear-form Restriction!
. list in 1/3, sep(1)

y x1 x2

1. -1.09811 -.3591099 .3387246

2. -1.742268 .1902105 -1.498368

3. 1.273768 -1.602709 1.034604

6 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [2]

I On the other hand, a conditional logistic regression (see [R] clogit) does
NOT meet the Linear-form Restriction!

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))
I Where:

• yin response variable: 1 if the alternative i is selected and 0 otherwise.
• xin is the attribute level of alternative i for individual n.
• β is the vector of alternative-specific regression coefficients.
. list in 1/6 , sep(3)

id altern˜e x1 x2 choice

1. 1 1 -1.666827 -1.969941 0
2. 1 2 .5580259 -.2189879 0
3. 1 3 1.054737 1.894969 1

4. 2 1 -1.913301 -.1506114 0
5. 2 2 -.1818884 -.2132395 1
6. 2 3 1.19467 -.6775483 0

7 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [2]

I On the other hand, a conditional logistic regression (see [R] clogit) does
NOT meet the Linear-form Restriction!

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))

I Where:
• yin response variable: 1 if the alternative i is selected and 0 otherwise.
• xin is the attribute level of alternative i for individual n.
• β is the vector of alternative-specific regression coefficients.
. list in 1/6 , sep(3)

id altern˜e x1 x2 choice

1. 1 1 -1.666827 -1.969941 0
2. 1 2 .5580259 -.2189879 0
3. 1 3 1.054737 1.894969 1

4. 2 1 -1.913301 -.1506114 0
5. 2 2 -.1818884 -.2132395 1
6. 2 3 1.19467 -.6775483 0

7 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [2]

I On the other hand, a conditional logistic regression (see [R] clogit) does
NOT meet the Linear-form Restriction!

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))
I Where:

• yin response variable: 1 if the alternative i is selected and 0 otherwise.

• xin is the attribute level of alternative i for individual n.
• β is the vector of alternative-specific regression coefficients.
. list in 1/6 , sep(3)

id altern˜e x1 x2 choice

1. 1 1 -1.666827 -1.969941 0
2. 1 2 .5580259 -.2189879 0
3. 1 3 1.054737 1.894969 1

4. 2 1 -1.913301 -.1506114 0
5. 2 2 -.1818884 -.2132395 1
6. 2 3 1.19467 -.6775483 0

7 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [2]

I On the other hand, a conditional logistic regression (see [R] clogit) does
NOT meet the Linear-form Restriction!

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))
I Where:

• yin response variable: 1 if the alternative i is selected and 0 otherwise.
• xin is the attribute level of alternative i for individual n.

• β is the vector of alternative-specific regression coefficients.
. list in 1/6 , sep(3)

id altern˜e x1 x2 choice

1. 1 1 -1.666827 -1.969941 0
2. 1 2 .5580259 -.2189879 0
3. 1 3 1.054737 1.894969 1

4. 2 1 -1.913301 -.1506114 0
5. 2 2 -.1818884 -.2132395 1
6. 2 3 1.19467 -.6775483 0

7 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [2]

I On the other hand, a conditional logistic regression (see [R] clogit) does
NOT meet the Linear-form Restriction!

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))
I Where:

• yin response variable: 1 if the alternative i is selected and 0 otherwise.
• xin is the attribute level of alternative i for individual n.
• β is the vector of alternative-specific regression coefficients.

. list in 1/6 , sep(3)

id altern˜e x1 x2 choice

1. 1 1 -1.666827 -1.969941 0
2. 1 2 .5580259 -.2189879 0
3. 1 3 1.054737 1.894969 1

4. 2 1 -1.913301 -.1506114 0
5. 2 2 -.1818884 -.2132395 1
6. 2 3 1.19467 -.6775483 0

7 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [2]

I On the other hand, a conditional logistic regression (see [R] clogit) does
NOT meet the Linear-form Restriction!

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))
I Where:

• yin response variable: 1 if the alternative i is selected and 0 otherwise.
• xin is the attribute level of alternative i for individual n.
• β is the vector of alternative-specific regression coefficients.
. list in 1/6 , sep(3)

id altern˜e x1 x2 choice

1. 1 1 -1.666827 -1.969941 0
2. 1 2 .5580259 -.2189879 0
3. 1 3 1.054737 1.894969 1

4. 2 1 -1.913301 -.1506114 0
5. 2 2 -.1818884 -.2132395 1
6. 2 3 1.19467 -.6775483 0

7 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [3]

I Other examples of models that do not meet said restriction are:

• The Cox regression (see [R] stcox)
• Panel Data (see [XT] xtreg)
• Conditional Logistic regression (see [R] clogit)

I In other words, if the model uses data in long format, it probably does
not meet the restriction.

8 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [3]

I Other examples of models that do not meet said restriction are:

• The Cox regression (see [R] stcox)

• Panel Data (see [XT] xtreg)
• Conditional Logistic regression (see [R] clogit)

I In other words, if the model uses data in long format, it probably does
not meet the restriction.

8 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [3]

I Other examples of models that do not meet said restriction are:

• The Cox regression (see [R] stcox)
• Panel Data (see [XT] xtreg)

• Conditional Logistic regression (see [R] clogit)

I In other words, if the model uses data in long format, it probably does
not meet the restriction.

8 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [3]

I Other examples of models that do not meet said restriction are:

• The Cox regression (see [R] stcox)
• Panel Data (see [XT] xtreg)
• Conditional Logistic regression (see [R] clogit)

I In other words, if the model uses data in long format, it probably does
not meet the restriction.

8 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

3 Linear-form Restriction? [3]

I Other examples of models that do not meet said restriction are:

• The Cox regression (see [R] stcox)
• Panel Data (see [XT] xtreg)
• Conditional Logistic regression (see [R] clogit)

I In other words, if the model uses data in long format, it probably does
not meet the restriction.

8 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions

8 Bibliography
9 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 The Problem [1]

I To illustrate the problem, say we write our own conditional logistic re-
gression (MyClogit) using the ml command. (Program available on slide
32).

. qui clogit choice x1 x2 , gr(id) nolog

. matrix b_clogit = e(b)

. MyClogit choice x1 x2 , gr(id) nolog
MyClogit Number of obs = 300

Wald chi2(2) = 38.72
Log likelihood = -53.10466 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .5233348 .1771384 2.95 0.003 .1761499 .8705197
x2 1.922775 .3146272 6.11 0.000 1.306117 2.539433

. matrix b_MyClogit = e(b)

. di mreldif(b_MyClogit, b_clogit)
2.308e-08

• We also check that the estimates from our program are numerically equiv-
alent to Stata’s clogit command.

10 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 The Problem [1]

I To illustrate the problem, say we write our own conditional logistic re-
gression (MyClogit) using the ml command. (Program available on slide
32).

. qui clogit choice x1 x2 , gr(id) nolog

. matrix b_clogit = e(b)

. MyClogit choice x1 x2 , gr(id) nolog
MyClogit Number of obs = 300

Wald chi2(2) = 38.72
Log likelihood = -53.10466 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .5233348 .1771384 2.95 0.003 .1761499 .8705197
x2 1.922775 .3146272 6.11 0.000 1.306117 2.539433

. matrix b_MyClogit = e(b)

. di mreldif(b_MyClogit, b_clogit)
2.308e-08

• We also check that the estimates from our program are numerically equiv-
alent to Stata’s clogit command.

10 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 The Problem [2]

I So far... So good, right?

I We managed to replicate Stata’s clogit command results.

I Now, say, we would like to compute robust standard errors.

I As usually, we would type robust.

I However...

. MyClogit choice x1 x2 , gr(id) nolog robust
option vce(robust) is not allowed with evaltype d0
r(198);

I Hence, we are in " trouble " !

11 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 The Problem [2]

I So far... So good, right?

I We managed to replicate Stata’s clogit command results.

I Now, say, we would like to compute robust standard errors.

I As usually, we would type robust.

I However...

. MyClogit choice x1 x2 , gr(id) nolog robust
option vce(robust) is not allowed with evaltype d0
r(198);

I Hence, we are in " trouble " !

11 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 The Problem [2]

I So far... So good, right?

I We managed to replicate Stata’s clogit command results.

I Now, say, we would like to compute robust standard errors.

I As usually, we would type robust.

I However...

. MyClogit choice x1 x2 , gr(id) nolog robust
option vce(robust) is not allowed with evaltype d0
r(198);

I Hence, we are in " trouble " !

11 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 The Problem [2]

I So far... So good, right?

I We managed to replicate Stata’s clogit command results.

I Now, say, we would like to compute robust standard errors.

I As usually, we would type robust.

I However...

. MyClogit choice x1 x2 , gr(id) nolog robust
option vce(robust) is not allowed with evaltype d0
r(198);

I Hence, we are in " trouble " !

11 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 The Problem [2]

I So far... So good, right?

I We managed to replicate Stata’s clogit command results.

I Now, say, we would like to compute robust standard errors.

I As usually, we would type robust.

I However...

. MyClogit choice x1 x2 , gr(id) nolog robust
option vce(robust) is not allowed with evaltype d0
r(198);

I Hence, we are in " trouble " !

11 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 The Problem [2]

I So far... So good, right?

I We managed to replicate Stata’s clogit command results.

I Now, say, we would like to compute robust standard errors.

I As usually, we would type robust.

I However...

. MyClogit choice x1 x2 , gr(id) nolog robust
option vce(robust) is not allowed with evaltype d0
r(198);

I Hence, we are in " trouble " !

11 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

4 The Problem [2]

I So far... So good, right?

I We managed to replicate Stata’s clogit command results.

I Now, say, we would like to compute robust standard errors.

I As usually, we would type robust.

I However...

. MyClogit choice x1 x2 , gr(id) nolog robust
option vce(robust) is not allowed with evaltype d0
r(198);

I Hence, we are in " trouble " !

11 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

5 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions

8 Bibliography
12 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

5 Robust Variance Covariance Matrix: A very brief review

I We can write every maximum likelihood estimator as

G(β) =
N∑

n=1
S(β; yn,xn) = 0 where S(β; yn,xn)︸ ︷︷ ︸

Score functions

= ∂ lnLn/∂β

I Then, we can compute the robust variance-estimator of β as:

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (1)

I W = −H−1 is the negative of the inverse of the hessian.
• We already have this “for free”: (e.g., e(V) matrix).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂.

I Hence, un is the only object that is missing in order to compute V̂ (β̂).

13 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

5 Robust Variance Covariance Matrix: A very brief review

I We can write every maximum likelihood estimator as

G(β) =
N∑

n=1
S(β; yn,xn) = 0 where S(β; yn,xn)︸ ︷︷ ︸

Score functions

= ∂ lnLn/∂β

I Then, we can compute the robust variance-estimator of β as:

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (1)

I W = −H−1 is the negative of the inverse of the hessian.
• We already have this “for free”: (e.g., e(V) matrix).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂.

I Hence, un is the only object that is missing in order to compute V̂ (β̂).

13 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

5 Robust Variance Covariance Matrix: A very brief review

I We can write every maximum likelihood estimator as

G(β) =
N∑

n=1
S(β; yn,xn) = 0 where S(β; yn,xn)︸ ︷︷ ︸

Score functions

= ∂ lnLn/∂β

I Then, we can compute the robust variance-estimator of β as:

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (1)

I W = −H−1 is the negative of the inverse of the hessian.
• We already have this “for free”: (e.g., e(V) matrix).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂.

I Hence, un is the only object that is missing in order to compute V̂ (β̂).

13 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

5 Robust Variance Covariance Matrix: A very brief review

I We can write every maximum likelihood estimator as

G(β) =
N∑

n=1
S(β; yn,xn) = 0 where S(β; yn,xn)︸ ︷︷ ︸

Score functions

= ∂ lnLn/∂β

I Then, we can compute the robust variance-estimator of β as:

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (1)

I W = −H−1 is the negative of the inverse of the hessian.

• We already have this “for free”: (e.g., e(V) matrix).
I un = S(β̂; yn,xn) are row vectors that contains the score functions

evaluated at β̂.
I Hence, un is the only object that is missing in order to compute V̂ (β̂).

13 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

5 Robust Variance Covariance Matrix: A very brief review

I We can write every maximum likelihood estimator as

G(β) =
N∑

n=1
S(β; yn,xn) = 0 where S(β; yn,xn)︸ ︷︷ ︸

Score functions

= ∂ lnLn/∂β

I Then, we can compute the robust variance-estimator of β as:

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (1)

I W = −H−1 is the negative of the inverse of the hessian.
• We already have this “for free”: (e.g., e(V) matrix).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂.

I Hence, un is the only object that is missing in order to compute V̂ (β̂).

13 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

5 Robust Variance Covariance Matrix: A very brief review

I We can write every maximum likelihood estimator as

G(β) =
N∑

n=1
S(β; yn,xn) = 0 where S(β; yn,xn)︸ ︷︷ ︸

Score functions

= ∂ lnLn/∂β

I Then, we can compute the robust variance-estimator of β as:

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (1)

I W = −H−1 is the negative of the inverse of the hessian.
• We already have this “for free”: (e.g., e(V) matrix).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂.

I Hence, un is the only object that is missing in order to compute V̂ (β̂).

13 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

5 Robust Variance Covariance Matrix: A very brief review

I We can write every maximum likelihood estimator as

G(β) =
N∑

n=1
S(β; yn,xn) = 0 where S(β; yn,xn)︸ ︷︷ ︸

Score functions

= ∂ lnLn/∂β

I Then, we can compute the robust variance-estimator of β as:

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (1)

I W = −H−1 is the negative of the inverse of the hessian.
• We already have this “for free”: (e.g., e(V) matrix).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂.

I Hence, un is the only object that is missing in order to compute V̂ (β̂).

13 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions

8 Bibliography
14 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the
score functions analytically. This involve two additional steps.

• First (and the most obvious one), the developer needs to derive the score
functions by hand (using pencil and paper + calculus).

• Second, after knowing the algebraic expression, it has to be coded on
Stata or Mata.

2 Another possible solution: Numerically approximate the score func-
tions, using what we already have coded: the log-likelihood function.

I "SPOILER ALERT":

• Our solution will consist in:

1 (Numerically) approximate the vector un.

2 Compute V̂ (β̂) using it.

15 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the
score functions analytically. This involve two additional steps.

• First (and the most obvious one), the developer needs to derive the score
functions by hand (using pencil and paper + calculus).

• Second, after knowing the algebraic expression, it has to be coded on
Stata or Mata.

2 Another possible solution: Numerically approximate the score func-
tions, using what we already have coded: the log-likelihood function.

I "SPOILER ALERT":

• Our solution will consist in:

1 (Numerically) approximate the vector un.

2 Compute V̂ (β̂) using it.

15 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the
score functions analytically. This involve two additional steps.

• First (and the most obvious one), the developer needs to derive the score
functions by hand (using pencil and paper + calculus).

• Second, after knowing the algebraic expression, it has to be coded on
Stata or Mata.

2 Another possible solution: Numerically approximate the score func-
tions, using what we already have coded: the log-likelihood function.

I "SPOILER ALERT":

• Our solution will consist in:

1 (Numerically) approximate the vector un.

2 Compute V̂ (β̂) using it.

15 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the
score functions analytically. This involve two additional steps.

• First (and the most obvious one), the developer needs to derive the score
functions by hand (using pencil and paper + calculus).

• Second, after knowing the algebraic expression, it has to be coded on
Stata or Mata.

2 Another possible solution: Numerically approximate the score func-
tions, using what we already have coded: the log-likelihood function.

I "SPOILER ALERT":

• Our solution will consist in:

1 (Numerically) approximate the vector un.

2 Compute V̂ (β̂) using it.

15 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the
score functions analytically. This involve two additional steps.

• First (and the most obvious one), the developer needs to derive the score
functions by hand (using pencil and paper + calculus).

• Second, after knowing the algebraic expression, it has to be coded on
Stata or Mata.

2 Another possible solution: Numerically approximate the score func-
tions, using what we already have coded: the log-likelihood function.

I "SPOILER ALERT":

• Our solution will consist in:

1 (Numerically) approximate the vector un.

2 Compute V̂ (β̂) using it.

15 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the
score functions analytically. This involve two additional steps.

• First (and the most obvious one), the developer needs to derive the score
functions by hand (using pencil and paper + calculus).

• Second, after knowing the algebraic expression, it has to be coded on
Stata or Mata.

2 Another possible solution: Numerically approximate the score func-
tions, using what we already have coded: the log-likelihood function.

I "SPOILER ALERT":

• Our solution will consist in:

1 (Numerically) approximate the vector un.

2 Compute V̂ (β̂) using it.

15 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the
score functions analytically. This involve two additional steps.

• First (and the most obvious one), the developer needs to derive the score
functions by hand (using pencil and paper + calculus).

• Second, after knowing the algebraic expression, it has to be coded on
Stata or Mata.

2 Another possible solution: Numerically approximate the score func-
tions, using what we already have coded: the log-likelihood function.

I "SPOILER ALERT":

• Our solution will consist in:

1 (Numerically) approximate the vector un.

2 Compute V̂ (β̂) using it.

15 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the
score functions analytically. This involve two additional steps.

• First (and the most obvious one), the developer needs to derive the score
functions by hand (using pencil and paper + calculus).

• Second, after knowing the algebraic expression, it has to be coded on
Stata or Mata.

2 Another possible solution: Numerically approximate the score func-
tions, using what we already have coded: the log-likelihood function.

I "SPOILER ALERT":

• Our solution will consist in:

1 (Numerically) approximate the vector un.

2 Compute V̂ (β̂) using it.

15 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [2]: Collecting everything we need

I First, we provide Mata with everything we need to compute the log-
likelihood contribution of each individual.

. // We create relevant matrices on Stata to push them to Mata afterwards.

. matrix b = e(b) // Maximum Likelihood estimates

. matrix W = e(V) // Non-robust variance-covariance matrix

. // We initialize Mata

. mata:
mata (type end to exit)

: // Invoking Stata matrices
: betas = st_matrix("b") // Calls from Stata the matrix "b"
: W = st_matrix("W") // Calls from Stata the matrix "W"
:
: // Invoking Stata Variables
: st_view(X = ., ., "x1 x2") // View of all regressors x1 and x2
: st_view(Y = ., ., "choice") // View of response variable "choice"
: XY = (Y,X) // Generates XY matrix for future usage.
:
: // Extracting information about the id of individuals.
: st_view(panvar = ., ., "id") // View of individuals id
: paninfo = panelsetup(panvar, 1) // Sets up panel processing
: N = panelstats(paninfo)[1] // Number of Individuals
: end

16 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [3]: Writing our log-likelihood function

I Second, we will create a void function, LL d(), that resembles our log-
likelihood function.

I We will invoke it later when using Mata’s deriv() function.
. mata:

mata (type end to exit)
: // Creating the function we will invoke using Mata´s deriv().
: void LL_d(real rowvector b , // 1ST ARGUMENT: Maximum likelihood estimates
> real matrix XY , // 2ND ARGUMENT: Convariates + dependent variable
> real scalar lnf) // Output: Log-likelihood contribution
> {
> Y = XY[.,1] // Extract variable Y
> X = XY[., (2::cols(XY))] // Extract the regressors (x1 and x2)
> U = rowsum(b:*X) // Observed Utility
> P = exp(U):/colsum(exp(U)) // Multinomial Probability
> lnf = colsum(Y:*ln(P)) // Individual contribution to the log-likelihood
> }
: end

I As you can see, this resembles exactly our log-likelihood.

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))

17 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [3]: Writing our log-likelihood function

I Second, we will create a void function, LL d(), that resembles our log-
likelihood function.

I We will invoke it later when using Mata’s deriv() function.

. mata:
mata (type end to exit)

: // Creating the function we will invoke using Mata´s deriv().
: void LL_d(real rowvector b , // 1ST ARGUMENT: Maximum likelihood estimates
> real matrix XY , // 2ND ARGUMENT: Convariates + dependent variable
> real scalar lnf) // Output: Log-likelihood contribution
> {
> Y = XY[.,1] // Extract variable Y
> X = XY[., (2::cols(XY))] // Extract the regressors (x1 and x2)
> U = rowsum(b:*X) // Observed Utility
> P = exp(U):/colsum(exp(U)) // Multinomial Probability
> lnf = colsum(Y:*ln(P)) // Individual contribution to the log-likelihood
> }
: end

I As you can see, this resembles exactly our log-likelihood.

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))

17 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [3]: Writing our log-likelihood function

I Second, we will create a void function, LL d(), that resembles our log-
likelihood function.

I We will invoke it later when using Mata’s deriv() function.
. mata:

mata (type end to exit)
: // Creating the function we will invoke using Mata´s deriv().
: void LL_d(real rowvector b , // 1ST ARGUMENT: Maximum likelihood estimates
> real matrix XY , // 2ND ARGUMENT: Convariates + dependent variable
> real scalar lnf) // Output: Log-likelihood contribution
> {
> Y = XY[.,1] // Extract variable Y
> X = XY[., (2::cols(XY))] // Extract the regressors (x1 and x2)
> U = rowsum(b:*X) // Observed Utility
> P = exp(U):/colsum(exp(U)) // Multinomial Probability
> lnf = colsum(Y:*ln(P)) // Individual contribution to the log-likelihood
> }
: end

I As you can see, this resembles exactly our log-likelihood.

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))

17 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [3]: Writing our log-likelihood function

I Second, we will create a void function, LL d(), that resembles our log-
likelihood function.

I We will invoke it later when using Mata’s deriv() function.
. mata:

mata (type end to exit)
: // Creating the function we will invoke using Mata´s deriv().
: void LL_d(real rowvector b , // 1ST ARGUMENT: Maximum likelihood estimates
> real matrix XY , // 2ND ARGUMENT: Convariates + dependent variable
> real scalar lnf) // Output: Log-likelihood contribution
> {
> Y = XY[.,1] // Extract variable Y
> X = XY[., (2::cols(XY))] // Extract the regressors (x1 and x2)
> U = rowsum(b:*X) // Observed Utility
> P = exp(U):/colsum(exp(U)) // Multinomial Probability
> lnf = colsum(Y:*ln(P)) // Individual contribution to the log-likelihood
> }
: end

I As you can see, this resembles exactly our log-likelihood.

lnL =
N∑

n=1

J∑
i=1

yin ln (Pin) =
N∑

n=1

J∑
i=1

yin ln
(

exp
(
β′xin

)∑J
j=1 exp

(
β′xin

))
17 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [4]: Score function of the first individual

I Third, to begin with, we will illustrate how to compute the score function
of the first individual using deriv():

. mata:
mata (type end to exit)

: D =deriv_init() // Init deriv() ´struct´ and call it "D"
: deriv_init_evaluator(D, &LL_d()) // We provide the ´struct´ D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual´s X and Y
: xy_n

1 2 3

1 0 -1.666826963 -1.969941497
2 0 .5580258965 -.218987897
3 1 1.054736972 1.894969106

: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn // Display it

1 2

1 .006871893 .0281603095

: end

18 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [4]: Score function of the first individual

I Third, to begin with, we will illustrate how to compute the score function
of the first individual using deriv():

. mata:
mata (type end to exit)

: D = deriv_init() // Init deriv() ´struct´ and call it "D"
: deriv_init_evaluator(D, &LL_d()) // We provide the ´struct´ D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual´s X and Y
: xy_n

1 2 3

1 0 -1.666826963 -1.969941497
2 0 .5580258965 -.218987897
3 1 1.054736972 1.894969106

: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn // Display it

1 2

1 .006871893 .0281603095

: end

19 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [4]: Score function of the first individual

I Third, to begin with, we will illustrate how to compute the score function
of the first individual using deriv():

. mata:
mata (type end to exit)

: D = deriv_init() // Init deriv() ´struct´ and call it "D"
: deriv_init_evaluator(D, &LL_d()) // We provide the ´struct´ D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual´s X and Y
: xy_n

1 2 3

1 0 -1.666826963 -1.969941497
2 0 .5580258965 -.218987897
3 1 1.054736972 1.894969106

: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn // Display it

1 2

1 .006871893 .0281603095

: end

20 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [4]: Score function of the first individual

I Third, to begin with, we will illustrate how to compute the score function
of the first individual using deriv():

. mata:
mata (type end to exit)

: D = deriv_init() // Init deriv() ´struct´ and call it "D"
: deriv_init_evaluator(D, &LL_d()) // We provide the ´struct´ D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual´s X and Y
: xy_n

1 2 3

1 0 -1.666826963 -1.969941497
2 0 .5580258965 -.218987897
3 1 1.054736972 1.894969106

: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn // Display it

1 2

1 .006871893 .0281603095

: end

21 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [4]: Score function of the first individual

I Third, to begin with, we will illustrate how to compute the score function
of the first individual using deriv():

. mata:
mata (type end to exit)

: D = deriv_init() // Init deriv() ´struct´ and call it "D"
: deriv_init_evaluator(D, &LL_d()) // We provide the ´struct´ D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual´s X and Y
: xy_n

1 2 3

1 0 -1.666826963 -1.969941497
2 0 .5580258965 -.218987897
3 1 1.054736972 1.894969106

: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn // Display it

1 2

1 .006871893 .0281603095

: end

22 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [4]: Score function of the first individual

I Third, to begin with, we will illustrate how to compute the score function
of the first individual using deriv():

. mata:
mata (type end to exit)

: D = deriv_init() // Init deriv() ´struct´ and call it "D"
: deriv_init_evaluator(D, &LL_d()) // We provide the ´struct´ D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual´s X and Y
: xy_n

1 2 3

1 0 -1.666826963 -1.969941497
2 0 .5580258965 -.218987897
3 1 1.054736972 1.894969106

: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn // Display it

1 2

1 .006871893 .0281603095

: end

23 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [5]: Score functions of the entire sample

I Now that we know how to perform the derivative of a function we can
apply it to the whole sample (e.g., to all the individuals in the sample):

. mata:
mata (type end to exit)

: D = deriv_init() // Init deriv() ´struct´
: deriv_init_evaluator(D, &LL_d()) // ´struct´ D is prodived with the pointer LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: score_fn = J(0, cols(betas),.) // Vector length 0xcols(betas)
: for(n=1; n <= N; ++n) { // Looping over n individuals
> xy_n = panelsubmatrix(XY, n, paninfo) // Extract submatrix of individual n
> deriv_init_params(D, betas) // provide D with beta estimates
> deriv_init_argument(D, 1, xy_n) // provide D with attributes values
> score_fn = score_fn \ deriv(D, 1) // Collect score functions from each individual
>
> }
: score_fn[1..4,] // display the score functions of the first 4 individuals

1 2

1 .006871893 .0281603095
2 -.1607972318 .1576732297
3 -.0730075944 .1282049291
4 .0035216089 .0050014822

: // Finally, we save the score functions as S just for a handy matrix multiplication afterwards.
: S = score_fn
: end

24 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [6]: Obtaining the robust correction

I All we have to do now is just perform the matrix multiplication described
below to find the robust variance-covariance matrix.

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (2)

I W = −H−1 is the negative of the inverse of the hessian (Object W).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂ (Object S).

I Accordingly, it is as simple as:

. mata:
mata (type end to exit)

: meat = (N/(N-1)) * S´ * S // Some people call this part the "meat".
: V_robust_approx= W * meat * W // Approximated robust variance-covariance matrix.
: st_matrix("V_robust_approx", V_robust_approx) // Save robust matrix into a Stata Matrix.
: end

25 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [6]: Obtaining the robust correction

I All we have to do now is just perform the matrix multiplication described
below to find the robust variance-covariance matrix.

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (2)

I W = −H−1 is the negative of the inverse of the hessian (Object W).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂ (Object S).

I Accordingly, it is as simple as:

. mata:
mata (type end to exit)

: meat = (N/(N-1)) * S´ * S // Some people call this part the "meat".
: V_robust_approx= W * meat * W // Approximated robust variance-covariance matrix.
: st_matrix("V_robust_approx", V_robust_approx) // Save robust matrix into a Stata Matrix.
: end

25 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [6]: Obtaining the robust correction

I All we have to do now is just perform the matrix multiplication described
below to find the robust variance-covariance matrix.

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (2)

I W = −H−1 is the negative of the inverse of the hessian (Object W).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂ (Object S).

I Accordingly, it is as simple as:

. mata:
mata (type end to exit)

: meat = (N/(N-1)) * S´ * S // Some people call this part the "meat".
: V_robust_approx= W * meat * W // Approximated robust variance-covariance matrix.
: st_matrix("V_robust_approx", V_robust_approx) // Save robust matrix into a Stata Matrix.
: end

25 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [6]: Obtaining the robust correction

I All we have to do now is just perform the matrix multiplication described
below to find the robust variance-covariance matrix.

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (2)

I W = −H−1 is the negative of the inverse of the hessian (Object W).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂ (Object S).

I Accordingly, it is as simple as:

. mata:
mata (type end to exit)

: meat = (N/(N-1)) * S´ * S // Some people call this part the "meat".
: V_robust_approx= W * meat * W // Approximated robust variance-covariance matrix.
: st_matrix("V_robust_approx", V_robust_approx) // Save robust matrix into a Stata Matrix.
: end

25 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [6]: Obtaining the robust correction

I All we have to do now is just perform the matrix multiplication described
below to find the robust variance-covariance matrix.

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (2)

I W = −H−1 is the negative of the inverse of the hessian (Object W).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂ (Object S).

I Accordingly, it is as simple as:

. mata:
mata (type end to exit)

: meat = (N/(N-1)) * S´ * S // Some people call this part the "meat".
: V_robust_approx= W * meat * W // Approximated robust variance-covariance matrix.
: st_matrix("V_robust_approx", V_robust_approx) // Save robust matrix into a Stata Matrix.
: end

25 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [6]: Obtaining the robust correction

I All we have to do now is just perform the matrix multiplication described
below to find the robust variance-covariance matrix.

V̂ (β̂) = W

(
N

N − 1

N∑
n=1

u′nun

)
W (2)

I W = −H−1 is the negative of the inverse of the hessian (Object W).

I un = S(β̂; yn,xn) are row vectors that contains the score functions
evaluated at β̂ (Object S).

I Accordingly, it is as simple as:

. mata:
mata (type end to exit)

: meat = (N/(N-1)) * S´ * S // Some people call this part the "meat".
: V_robust_approx= W * meat * W // Approximated robust variance-covariance matrix.
: st_matrix("V_robust_approx", V_robust_approx) // Save robust matrix into a Stata Matrix.
: end

25 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

6 The Solution [7]: Checking our approximation

I Using V robust approx we can check how far are our numerically ap-
proximated robust covariance matrices compared with Stata’s clogit.

. clogit choice x* ,gr(id) robust nolog
Conditional (fixed-effects) logistic regression

Number of obs = 300
Wald chi2(2) = 42.15
Prob > chi2 = 0.0000

Log pseudolikelihood = -53.10466 Pseudo R2 = 0.5166
(Std. Err. adjusted for clustering on id)

Robust
choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .5233348 .1587735 3.30 0.001 .2121444 .8345252
x2 1.922775 .3334521 5.77 0.000 1.26922 2.576329

. mat V_robust_clogit = e(V)

. mat li V_robust_approx
symmetric V_robust_approx[2,2]

c1 c2
r1 .02520903
r2 .00291664 .11119032
. mat li V_robust_clogit
symmetric V_robust_clogit[2,2]

choice: choice:
x1 x2

choice:x1 .02520903
choice:x2 .00291664 .11119031
. display mreldif(V_robust_approx, V_robust_clogit)
7.734e-09

26 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

7 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions

8 Bibliography
27 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

7 Conclusions

I We have seen a workaround for those *rare* cases when the ml command
fails to produce robust standard errors.

I The illustrated solution is not meant to replace the algebraic computation
of the score functions, but a complement and a way to check our results.

I All the source code of this talk is available at this GitHub � repository.

I Bonus track: Further readings about things we used but not I did not
necessarily explained in much detail.

• Gould (2007) for a better understanding about -struct- type objects.
• Gould (2018) Section 3.4.4 for a detailed explanation about -&pointers-.
• Gould (2001) for more insights about Statistical Software Certification.

28 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

https://github.com/alvarogutyerrez/StataConfSeattle2021_Hunting_the_missing_Score_Fn

7 Conclusions

I We have seen a workaround for those *rare* cases when the ml command
fails to produce robust standard errors.

I The illustrated solution is not meant to replace the algebraic computation
of the score functions, but a complement and a way to check our results.

I All the source code of this talk is available at this GitHub � repository.

I Bonus track: Further readings about things we used but not I did not
necessarily explained in much detail.

• Gould (2007) for a better understanding about -struct- type objects.
• Gould (2018) Section 3.4.4 for a detailed explanation about -&pointers-.
• Gould (2001) for more insights about Statistical Software Certification.

28 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

https://github.com/alvarogutyerrez/StataConfSeattle2021_Hunting_the_missing_Score_Fn

7 Conclusions

I We have seen a workaround for those *rare* cases when the ml command
fails to produce robust standard errors.

I The illustrated solution is not meant to replace the algebraic computation
of the score functions, but a complement and a way to check our results.

I All the source code of this talk is available at this GitHub � repository.

I Bonus track: Further readings about things we used but not I did not
necessarily explained in much detail.

• Gould (2007) for a better understanding about -struct- type objects.
• Gould (2018) Section 3.4.4 for a detailed explanation about -&pointers-.
• Gould (2001) for more insights about Statistical Software Certification.

28 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

https://github.com/alvarogutyerrez/StataConfSeattle2021_Hunting_the_missing_Score_Fn

7 Conclusions

I We have seen a workaround for those *rare* cases when the ml command
fails to produce robust standard errors.

I The illustrated solution is not meant to replace the algebraic computation
of the score functions, but a complement and a way to check our results.

I All the source code of this talk is available at this GitHub � repository.

I Bonus track: Further readings about things we used but not I did not
necessarily explained in much detail.

• Gould (2007) for a better understanding about -struct- type objects.
• Gould (2018) Section 3.4.4 for a detailed explanation about -&pointers-.
• Gould (2001) for more insights about Statistical Software Certification.

28 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

https://github.com/alvarogutyerrez/StataConfSeattle2021_Hunting_the_missing_Score_Fn

7 Conclusions

I We have seen a workaround for those *rare* cases when the ml command
fails to produce robust standard errors.

I The illustrated solution is not meant to replace the algebraic computation
of the score functions, but a complement and a way to check our results.

I All the source code of this talk is available at this GitHub � repository.

I Bonus track: Further readings about things we used but not I did not
necessarily explained in much detail.

• Gould (2007) for a better understanding about -struct- type objects.

• Gould (2018) Section 3.4.4 for a detailed explanation about -&pointers-.
• Gould (2001) for more insights about Statistical Software Certification.

28 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

https://github.com/alvarogutyerrez/StataConfSeattle2021_Hunting_the_missing_Score_Fn

7 Conclusions

I We have seen a workaround for those *rare* cases when the ml command
fails to produce robust standard errors.

I The illustrated solution is not meant to replace the algebraic computation
of the score functions, but a complement and a way to check our results.

I All the source code of this talk is available at this GitHub � repository.

I Bonus track: Further readings about things we used but not I did not
necessarily explained in much detail.

• Gould (2007) for a better understanding about -struct- type objects.
• Gould (2018) Section 3.4.4 for a detailed explanation about -&pointers-.

• Gould (2001) for more insights about Statistical Software Certification.

28 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

https://github.com/alvarogutyerrez/StataConfSeattle2021_Hunting_the_missing_Score_Fn

7 Conclusions

I We have seen a workaround for those *rare* cases when the ml command
fails to produce robust standard errors.

I The illustrated solution is not meant to replace the algebraic computation
of the score functions, but a complement and a way to check our results.

I All the source code of this talk is available at this GitHub � repository.

I Bonus track: Further readings about things we used but not I did not
necessarily explained in much detail.

• Gould (2007) for a better understanding about -struct- type objects.
• Gould (2018) Section 3.4.4 for a detailed explanation about -&pointers-.
• Gould (2001) for more insights about Statistical Software Certification.

28 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

https://github.com/alvarogutyerrez/StataConfSeattle2021_Hunting_the_missing_Score_Fn

8 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions

8 Bibliography
29 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

9 Bibliography

Gould, W. (2001). Statistical software certification. The Stata Journal, 1(1):29–50.
Gould, W. (2007). Mata matters: Structures. The Stata Journal, 7(4):556–570.
Gould, W., Pitblado, J., and Poi, B. (2010). Maximum Likelihood Estimation with Stata. StataCorp LP,

4th edition.
Gould, W. W. (2018). The Mata Book: A Book for Serious Programmers and Those who Want to be.

Stata Press.

30 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

10 Outline

9 MyClogit

10 MyLikelihood LL.mata

31 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

10 MyClogit.ado

program MyClogit
version 12
if replay() {
if ("`e(cmd)´" != "MyClogit") error 301
Replay `0´
}
else Estimate `0´

end
program Estimate, eclass sortpreserve

syntax varlist(fv) [if] [in] , GRoup(varname) ///
[TECHnique(passthru) noLOg ROBUST]

local mlopts `technique´
if ("`technique´" == "technique(bhhh)") {
di in red "technique(bhhh) is not allowed."
exit 498
}
gettoken lhs rhs : varlist
marksample touse
markout `touse´ `group´
global MY_panel = "`group´"
ml model d0 MyLikelihood_LL() ///

(MyClogit: `lhs´ = `rhs´, nocons) ///
if `touse´, missing first `log´ ///
title("MyClogit") `robust´ maximize
// Show model
ereturn local cmd MyClogit
Replay , level(`level´)
ereturn local cmdline `"`0´"´

end
program Replay

syntax [, Level(cilevel)]
ml display , level(`level´)

end
// include mata functions from MyLikelihood_LL.mata
findfile "MyLikelihood_LL.mata"
do "`r(fn)´"

32 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

11 Outline

9 MyClogit

10 MyLikelihood LL.mata

33 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

11 MyLikelihood LL.mata

mata:
void MyLikelihood_LL(transmorphic scalar M, real scalar todo,
real rowvector b, real scalar lnf,
real rowvector g, real matrix H)

{
// variables declaration
real matrix panvar
real matrix paninfo
real scalar npanels
real scalar n
real matrix Y
real matrix X
real matrix x_n
real matrix y_n
Y = moptimize_util_depvar(M, 1) // Response Variable
X = moptimize_init_eq_indepvars(M,1) // Attributes
id_beta_eq=moptimize_util_eq_indices(M,1) // id parameters
betas= b[|id_beta_eq|] // parameters
st_view(panvar = ., ., st_global("MY_panel"))
paninfo = panelsetup(panvar, 1)
npanels = panelstats(paninfo)[1]
lnfj = J(npanels, 1, 0) // object to store loglikelihood
for(n=1; n <= npanels; ++n) {

x_n = panelsubmatrix(X, n, paninfo)
y_n = panelsubmatrix(Y, n, paninfo)
U_n =exp(rowsum(betas :* x_n)) // Linear utility
p_i = colsum(U_n:* y_n) / colsum(U_n) // Probability of each alternative
lnfj[n] = ln(p_i) // Add contribution to the likelihood

}
lnf = moptimize_util_sum(M, lnfj)

}
end

34 Á. A. Gutiérrez-Vargas: Computing score functions numerically using Mata

	Introduction
	The ml command
	Linear-form Restriction
	The Problem
	Robust Variance Covariance Matrix: A very brief review
	The Solution
	Conclusions
	Bibliography
	References
	Appendix
	MyClogit
	MyLikelihood_LL.mata

