Computing score functions numerically using Mata

2021 UK Stata Conference

Álvaro A. Gutiérrez-Vargas (@alvarogutyerrez ©, ©, in)
P Research Centre for Operations Research and Statistics (ORStat)
Faculty of Economics and Business
KU Leuven, Belgium

1 Outline

(1) Introduction
(2) The ml command
(3) Linear-form Restriction
(4) The Problem
(5) Robust Variance Covariance Matrix: A very brief review
(6) The Solution
(7) Conclusions

1 Introduction

- In short:

1 Introduction

- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.

1 Introduction

- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.
- When will I need this?:

1 Introduction

- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.
- When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, ml does it automatically.

1 Introduction

- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.
- When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, ml does it automatically.
- Why is this relevant?:

1 Introduction

- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.
- When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, ml does it automatically.
- Why is this relevant?: Because we cannot longer only type "robust" to implement robust/clustered corrected variance-covariance matrices in our programs.

1 Introduction

- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.
- When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, ml does it automatically.
- Why is this relevant?: Because we cannot longer only type "robust" to implement robust/clustered corrected variance-covariance matrices in our programs.
- How can we solve such problem?:
- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.
- When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, ml does it automatically.
- Why is this relevant?: Because we cannot longer only type "robust" to implement robust/clustered corrected variance-covariance matrices in our programs.
- How can we solve such problem?: We will numerically approximate the score functions using Mata's deriv() function (see [R] deriv and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.
- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.
- When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, ml does it automatically.
- Why is this relevant?: Because we cannot longer only type "robust" to implement robust/clustered corrected variance-covariance matrices in our programs.
- How can we solve such problem?: We will numerically approximate the score functions using Mata's deriv() function (see [R] deriv and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.
- The talk seems off from my interests. Should I grab a coffee instead?:
- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.
- When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, ml does it automatically.
- Why is this relevant?: Because we cannot longer only type "robust" to implement robust/clustered corrected variance-covariance matrices in our programs.
- How can we solve such problem?: We will numerically approximate the score functions using Mata's deriv() function (see [R] deriv and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.
- The talk seems off from my interests. Should I grab a coffee instead?: Well... maybe (?)
- In short: We will see a workaround that allows us to compute robust variancecovariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.
- When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, ml does it automatically.
- Why is this relevant?: Because we cannot longer only type "robust" to implement robust/clustered corrected variance-covariance matrices in our programs.
- How can we solve such problem?: We will numerically approximate the score functions using Mata's deriv() function (see [R] deriv and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.
- The talk seems off from my interests. Should I grab a coffee instead?: Well... maybe (?), but you will lose some "very" interesting tricks about numerical derivatives using Mata that might be useful someday!

2 Outline

(1) Introduction
(2) The ml command
(3) Linear-form Restriction
(4) The Problem
(5) Robust Variance Covariance Matrix: A very brief review
(6) The Solution
(7) Conclusions

2 The ml command

- The ml command allows us to fit models using Maximum Likelihood.

2 The ml command

- The ml command allows us to fit models using Maximum Likelihood.
- The command has different types of evaluators (e.g., lf-family, gf-family, and d-family) which vary in terms of what kind of models they can be fit.

2 The ml command

- The ml command allows us to fit models using Maximum Likelihood.
- The command has different types of evaluators (e.g., lf-family, gf-family, and d-family) which vary in terms of what kind of models they can be fit.
- In particular: we will focus on models where the log-likelihood function does not meet the linear-form restrictions, which can be fitted using the d-family of evaluators.

2 The ml command

- The ml command allows us to fit models using Maximum Likelihood.
- The command has different types of evaluators (e.g., lf-family, gf-family, and d-family) which vary in terms of what kind of models they can be fit.
- In particular: we will focus on models where the log-likelihood function does not meet the linear-form restrictions, which can be fitted using the d-family of evaluators.
- The minimum requirement to implement a model using the ml command is to write its log-likelihood function (i.e., d0 evaluator).

2 The ml command

- The ml command allows us to fit models using Maximum Likelihood.
- The command has different types of evaluators (e.g., lf-family, gf-family, and d-family) which vary in terms of what kind of models they can be fit.
- In particular: we will focus on models where the log-likelihood function does not meet the linear-form restrictions, which can be fitted using the d-family of evaluators.
- The minimum requirement to implement a model using the ml command is to write its log-likelihood function (i.e., do evaluator).
- Faster methods can be implemented depending on what we provide the ml command with:
- do evaluator $=$ Log-likelihood
- d1 evaluator $=$ Log-likelihood + Gradient
- d2 evaluator $=$ Log-likelihood + Gradient + Hessian

3 Outline

(1) Introduction
(2) The ml command
(3) Linear-form Restriction
(4) The Problem
(5) Robust Variance Covariance Matrix: A very brief review
(6) The Solution
(7) Conclusions

3 Linear-form Restriction? [1]

- We say that a likelihood function meets the linear-form restrictions when:

3 Linear-form Restriction? [1]

- We say that a likelihood function meets the linear-form restrictions when:
- The log-likelihood contribution can be calculated separately for each observation.

3 Linear-form Restriction? [1]

- We say that a likelihood function meets the linear-form restrictions when:
- The log-likelihood contribution can be calculated separately for each observation.
- The sum of the individual contributions equals the overall log-likelihood.

3 Linear-form Restriction? [1]

- We say that a likelihood function meets the linear-form restrictions when:
- The log-likelihood contribution can be calculated separately for each observation.
- The sum of the individual contributions equals the overall log-likelihood.
- Take, for example, the normal linear regression model:

3 Linear-form Restriction? [1]

- We say that a likelihood function meets the linear-form restrictions when:
- The log-likelihood contribution can be calculated separately for each observation.
- The sum of the individual contributions equals the overall log-likelihood.
- Take, for example, the normal linear regression model:

$$
\ln L=\sum_{i=1}^{N}\left[\ln \left\{\phi\left(y_{i}-\boldsymbol{x}_{i} \beta\right) / \sigma\right\}-\ln \sigma\right]
$$

- This model does meet the Linear-form Restriction!

3 Linear-form Restriction? [1]

- We say that a likelihood function meets the linear-form restrictions when:
- The log-likelihood contribution can be calculated separately for each observation.
- The sum of the individual contributions equals the overall log-likelihood.
- Take, for example, the normal linear regression model:

$$
\ln L=\sum_{i=1}^{N}\left[\ln \left\{\phi\left(y_{i}-\boldsymbol{x}_{i} \beta\right) / \sigma\right\}-\ln \sigma\right]
$$

- This model does meet the Linear-form Restriction!

1.	y	x 1	x2
	-1.09811	-. 3591099	. 3387246
2.	-1.742268	. 1902105	-1.498368
3.	1.273768	-1.602709	1.034604

3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] clogit) does NOT meet the Linear-form Restriction!

3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] clogit) does NOT meet the Linear-form Restriction!

$$
\ln L=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(P_{i n}\right)=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(\frac{\exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}{\sum_{j=1}^{J} \exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}\right)
$$

3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] clogit) does NOT meet the Linear-form Restriction!

$$
\ln L=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(P_{i n}\right)=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(\frac{\exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}{\sum_{j=1}^{J} \exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}\right)
$$

- Where:
- $y_{\text {in }}$ response variable: 1 if the alternative i is selected and 0 otherwise.

3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] clogit) does NOT meet the Linear-form Restriction!

$$
\ln L=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(P_{i n}\right)=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(\frac{\exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}{\sum_{j=1}^{J} \exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}\right)
$$

- Where:
- $y_{i n}$ response variable: 1 if the alternative i is selected and 0 otherwise.
- $x_{i n}$ is the attribute level of alternative i for individual n.

3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] clogit) does NOT meet the Linear-form Restriction!

$$
\ln L=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(P_{i n}\right)=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(\frac{\exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}{\sum_{j=1}^{J} \exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}\right)
$$

- Where:
- $y_{i n}$ response variable: 1 if the alternative i is selected and 0 otherwise.
- $x_{i n}$ is the attribute level of alternative i for individual n.
- $\boldsymbol{\beta}$ is the vector of alternative-specific regression coefficients.

3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] clogit) does NOT meet the Linear-form Restriction!

$$
\ln L=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(P_{i n}\right)=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(\frac{\exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}{\sum_{j=1}^{J} \exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}\right)
$$

- Where:
- $y_{i n}$ response variable: 1 if the alternative i is selected and 0 otherwise.
- $x_{i n}$ is the attribute level of alternative i for individual n.
- $\boldsymbol{\beta}$ is the vector of alternative-specific regression coefficients.

	id	altern~e	x 1	x2	choice
1.	1	1	-1.666827	-1.969941	0
2.	1	2	. 5580259	-. 2189879	0
3.	1	3	1.054737	1.894969	1
4.	2	1	-1.913301	-. 1506114	0
5.	2	2	-. 1818884	-. 2132395	1
6.	2	3	1.19467	-. 6775483	0

3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:

3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:
- The Cox regression (see [R] stcox)

3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:
- The Cox regression (see [R] stcox)
- Panel Data (see [XT] xtreg)

3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:
- The Cox regression (see [R] stcox)
- Panel Data (see [XT] xtreg)
- Conditional Logistic regression (see [R] clogit)

3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:
- The Cox regression (see [R] stcox)
- Panel Data (see [XT] xtreg)
- Conditional Logistic regression (see [R] clogit)
- In other words, if the model uses data in long format, it probably does not meet the restriction.

4 Outline

(1) Introduction
(2) The ml command
(3) Linear-form Restriction
(4) The Problem
(5) Robust Variance Covariance Matrix: A very brief review
(6) The Solution
(7) Conclusions

4 The Problem [1]

- To illustrate the problem, say we write our own conditional logistic regression (MyClogit) using the ml command. (Program available on slide 32).

4 The Problem [1]

- To illustrate the problem, say we write our own conditional logistic regression (MyClogit) using the ml command. (Program available on slide 32).


```
. matrix b_MyClogit = e(b)
. di mreldif(b_MyClogit, b_clogit)
2.308e-08
```

- We also check that the estimates from our program are numerically equivalent to Stata's clogit command.

4 The Problem [2]

- So far... So good, right?

4 The Problem [2]

- So far... So good, right?
- We managed to replicate Stata's clogit command results.

4 The Problem [2]

- So far... So good, right?
- We managed to replicate Stata's clogit command results.
- Now, say, we would like to compute robust standard errors.

4 The Problem [2]

- So far... So good, right?
- We managed to replicate Stata's clogit command results.
- Now, say, we would like to compute robust standard errors.
- As usually, we would type robust.

4 The Problem [2]

- So far... So good, right?
- We managed to replicate Stata's clogit command results.
- Now, say, we would like to compute robust standard errors.
- As usually, we would type robust.
- However...

4 The Problem [2]

- So far... So good, right?
- We managed to replicate Stata's clogit command results.
- Now, say, we would like to compute robust standard errors.
- As usually, we would type robust.
- However...

```
. MyClogit choice x1 x2 , gr(id) nolog robust
option vce(robust) is not allowed with evaltype dO
r(198);
```


4 The Problem [2]

- So far... So good, right?
- We managed to replicate Stata's clogit command results.
- Now, say, we would like to compute robust standard errors.
- As usually, we would type robust.
- However...

```
. MyClogit choice x1 x2 , gr(id) nolog robust
option vce(robust) is not allowed with evaltype dO
r(198);
```

\checkmark Hence, we are in \triangle trouble \triangle !

5 Outline

(1) Introduction
(2) The ml command
(3) Linear-form Restriction
(4) The Problem
(5) Robust Variance Covariance Matrix: A very brief review
(6) The Solution
(7) Conclusions

5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

$$
G(\boldsymbol{\beta})=\sum_{n=1}^{N} \boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)=\mathbf{0} \text { where } \underbrace{\boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)}_{\text {Score functions }}=\partial \ln L_{n} / \partial \boldsymbol{\beta}
$$

5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

$$
G(\boldsymbol{\beta})=\sum_{n=1}^{N} \boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)=\mathbf{0} \text { where } \underbrace{\boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)}_{\text {Score functions }}=\partial \ln L_{n} / \partial \boldsymbol{\beta}
$$

- Then, we can compute the robust variance-estimator of β as:

5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

$$
G(\boldsymbol{\beta})=\sum_{n=1}^{N} \boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)=\mathbf{0} \text { where } \underbrace{\boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)}_{\text {Score functions }}=\partial \ln L_{n} / \partial \boldsymbol{\beta}
$$

- Then, we can compute the robust variance-estimator of β as:

$$
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{1}
\end{equation*}
$$

5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

$$
G(\boldsymbol{\beta})=\sum_{n=1}^{N} \boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)=\mathbf{0} \text { where } \underbrace{\boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)}_{\text {Score functions }}=\partial \ln L_{n} / \partial \boldsymbol{\beta}
$$

- Then, we can compute the robust variance-estimator of β as:

$$
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{1}
\end{equation*}
$$

- $\boldsymbol{W}=-H^{-1}$ is the negative of the inverse of the hessian.

5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

$$
G(\boldsymbol{\beta})=\sum_{n=1}^{N} \boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)=\mathbf{0} \text { where } \underbrace{\boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)}_{\text {Score functions }}=\partial \ln L_{n} / \partial \boldsymbol{\beta}
$$

- Then, we can compute the robust variance-estimator of β as:

$$
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{1}
\end{equation*}
$$

- $\boldsymbol{W}=-H^{-1}$ is the negative of the inverse of the hessian.
- We already have this "for free": (e.g., e(V) matrix).

5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

$$
G(\boldsymbol{\beta})=\sum_{n=1}^{N} \boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)=\mathbf{0} \text { where } \underbrace{\boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)}_{\text {Score functions }}=\partial \ln L_{n} / \partial \boldsymbol{\beta}
$$

- Then, we can compute the robust variance-estimator of β as:

$$
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{1}
\end{equation*}
$$

- $\boldsymbol{W}=-H^{-1}$ is the negative of the inverse of the hessian.
- We already have this "for free": (e.g., e(V) matrix).
- $\boldsymbol{u}_{n}=\boldsymbol{S}\left(\widehat{\boldsymbol{\beta}} ; y_{n}, \boldsymbol{x}_{n}\right)$ are row vectors that contains the score functions evaluated at $\widehat{\boldsymbol{\beta}}$.

5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

$$
G(\boldsymbol{\beta})=\sum_{n=1}^{N} \boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)=\mathbf{0} \text { where } \underbrace{\boldsymbol{S}\left(\boldsymbol{\beta} ; y_{n}, \boldsymbol{x}_{n}\right)}_{\text {Score functions }}=\partial \ln L_{n} / \partial \boldsymbol{\beta}
$$

- Then, we can compute the robust variance-estimator of β as:

$$
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{1}
\end{equation*}
$$

- $\boldsymbol{W}=-H^{-1}$ is the negative of the inverse of the hessian.
- We already have this "for free": (e.g., e(V) matrix).
- $\boldsymbol{u}_{n}=\boldsymbol{S}\left(\widehat{\boldsymbol{\beta}} ; y_{n}, \boldsymbol{x}_{n}\right)$ are row vectors that contains the score functions evaluated at $\widehat{\boldsymbol{\beta}}$.
- Hence, \boldsymbol{u}_{n} is the only object that is missing in order to compute $\widehat{V}(\widehat{\boldsymbol{\beta}})$.

6 Outline
(1) Introduction
(2) The ml command
(3) Linear-form Restriction
(4) The Problem
(5) Robust Variance Covariance Matrix: A very brief review
(6) The Solution
(7) Conclusions

6 The Solution [1]: Two possible ways to proceed
1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

- First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).

The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

- First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
- Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

- First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
- Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2 Another possible solution: Numerically approximate the score functions, using what we already have coded: the log-likelihood function.

The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

- First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
- Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2 Another possible solution: Numerically approximate the score functions, using what we already have coded: the log-likelihood function.
$\rightarrow \triangle$ SPOILER ALERT \triangle :

The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

- First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
- Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2 Another possible solution: Numerically approximate the score functions, using what we already have coded: the log-likelihood function.

- \triangle SPOILER ALERT \triangle :
- Our solution will consist in:

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

- First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
- Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2 Another possible solution: Numerically approximate the score functions, using what we already have coded: the log-likelihood function.
$\rightarrow \triangle$ SPOILER ALERT \triangle :

- Our solution will consist in:

1 (Numerically) approximate the vector \boldsymbol{u}_{n}.

6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

- First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
- Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2 Another possible solution: Numerically approximate the score functions, using what we already have coded: the log-likelihood function.

- \triangle SPOILER ALERT \triangle :
- Our solution will consist in:

1 (Numerically) approximate the vector \boldsymbol{u}_{n}.
2 Compute $\widehat{V}(\widehat{\boldsymbol{\beta}})$ using it.

The Solution [2]: Collecting everything we need

First, we provide Mata with everything we need to compute the loglikelihood contribution of each individual.

```
. // We create relevant matrices on Stata to push them to Mata afterwards.
. matrix b = e(b) // Maximum Likelihood estimates
. matrix W = e(V) // Non-robust variance-covariance matrix
. // We initialize Mata
. mata:
    mata (type end to exit)
: // Invoking Stata matrices
: betas = st_matrix("b") // Calls from Stata the matrix "b"
: W = st_matrix("W") // Calls from Stata the matrix "W"
: // Invoking Stata Variables
: st_view(X = ., ., "x1 x2") // View of all regressors x1 and x2
: st_view(Y = ., ., "choice") // View of response variable "choice"
: XY = (Y,X) // Generates XY matrix for future usage.
: // Extracting information about the id of individuals.
: st_view(panvar = ., ., "id") // View of individuals id
: paninfo = panelsetup(panvar, 1) // Sets up panel processing
: N = panelstats(paninfo)[1] // Number of Individuals
: end
```

6 The Solution [3]: Writing our log-likelihood function

- Second, we will create a void function, LL_d(), that resembles our loglikelihood function.

6 The Solution [3]: Writing our log-likelihood function

- Second, we will create a void function, LL_d(), that resembles our loglikelihood function.
- We will invoke it later when using Mata's deriv() function.

The Solution [3]: Writing our log-likelihood function

- Second, we will create a void function, LL_d(), that resembles our loglikelihood function.
- We will invoke it later when using Mata's deriv() function.

```
. mata:
    mata (type end to exit)
    // Creating the function we will invoke using Mata's deriv().
: void LL_d(real rowvector b , // 1ST ARGUMENT: Maximum likelihood estimates
> real matrix XY , // 2ND ARGUMENT: Convariates + dependent variable
> real scalar lnf) // Output: Log-likelihood contribution
\ {
> Y = XY[.,1] // Extract variable Y
> X = XY[., (2::cols(XY))] // Extract the regressors (x1 and x2)
> U = rowsum(b:*X) // Observed Utility
> P = exp(U):/colsum(exp(U )) // Multinomial Probability
> lnf = colsum(Y:*ln(P)) // Individual contribution to the log-likelihood
> }
: end
```


The Solution [3]: Writing our log-likelihood function

- Second, we will create a void function, LL_d(), that resembles our loglikelihood function.
- We will invoke it later when using Mata's deriv() function.

```
. mata:
mata (type end to exit)
: // Creating the function we will invoke using Mata's deriv().
: void LL_d(real rowvector b , // 1ST ARGUMENT: Maximum likelihood estimates
            real matrix XY , // 2ND ARGUMENT: Convariates + dependent variable
    real scalar lnf) // Output: Log-likelihood contribution
{
> Y = XY[.,1] // Extract variable Y
> X = XY[., (2::cols(XY))] // Extract the regressors (x1 and x2)
> U = rowsum(b:*X) // Observed Utility
> P = exp(U):/colsum(exp(U )) // Multinomial Probability
> lnf = colsum(Y:*ln(P)) // Individual contribution to the log-likelihood
> }
: end
```

- As you can see, this resembles exactly our log-likelihood.

$$
\ln L=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(P_{i n}\right)=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n} \ln \left(\frac{\exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}{\sum_{j=1}^{J} \exp \left(\boldsymbol{\beta}^{\prime} x_{i n}\right)}\right)
$$

6
 The Solution [4]: Score function of the first individual

- Third, to begin with, we will illustrate how to compute the score function of the first individual using deriv():

```
. mata:
:D =deriv_init() // Init deriv() 'struct and call it "D"
: deriv_init_evaluator(D, &LL_d()) // We provide the 'struct' D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual's X and Y
: xy_n
\begin{tabular}{l|rrr|}
\multicolumn{1}{c}{1} & \multicolumn{2}{c}{2} & 3 \\
\cline { 2 - 4 } 1 & 0 & -1.666826963 & -1.969941497 \\
2 & 0 & .5580258965 & -.218987897 \\
3 & 1 & 1.054736972 & 1.894969106 \\
\hline
\end{tabular}
: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn // Display it
\begin{tabular}{|rr|}
\hline 1 & 2 \\
\hline .006871893 & .0281603095 \\
\hline
\end{tabular}
: end
```


6 The Solution [4]: Score function of the first individual

- Third, to begin with, we will illustrate how to compute the score function of the first individual using deriv():
. mata:

```
: D = deriv_init() // Init deriv() "struct" and call it "
: deriv_init_evaluator(D, &LL_d()) // We provide the 'struct' D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual's X and Y
: xy_n
\begin{tabular}{l|rrr|} 
& 1 & \multicolumn{2}{c}{2} \\
3 \\
\cline { 2 - 4 } & 1 & -1.666826963 & -1.969941497 \\
2 & 0 & .5580258965 & -.218987897 \\
3 & 1 & 1.054736972 & 1.894969106 \\
\hline
\end{tabular}
: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn
    // Display it
1
2
1 \(\square\)
: end
```


6 The Solution [4]: Score function of the first individual

- Third, to begin with, we will illustrate how to compute the score function of the first individual using deriv():
. mata:

6 The Solution [4]: Score function of the first individual

- Third, to begin with, we will illustrate how to compute the score function of the first individual using deriv():
. mata:

6 The Solution [4]: Score function of the first individual

- Third, to begin with, we will illustrate how to compute the score function of the first individual using deriv():
. mata:

```
: D = deriv_init() // Init deriv() 'struct' and call it "
: deriv_init_evaluator(D, &LL_d()) // We provide the 'struct' D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual's X and Y
: xy_n
\begin{tabular}{l|rrr|}
\multicolumn{1}{c}{1} & \multicolumn{2}{c}{2} & 3 \\
\cline { 2 - 4 } 1 & 0 & -1.666826963 & -1.969941497 \\
2 & 0 & .5580258965 & -.218987897 \\
3 & 1 & 1.054736972 & 1.894969106 \\
\cline { 2 - 4 } & &
\end{tabular}
: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn // Display it
    1 2
1
    .006871893 .0281603095
: end
```


6
 The Solution [4]: Score function of the first individual

- Third, to begin with, we will illustrate how to compute the score function of the first individual using deriv():
. mata:

```
: D = deriv_init() // Init deriv() 'struct` and call it "
: deriv_init_evaluator(D, &LL_d()) // We provide the 'struct' D with function LL_d()
: deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
: xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual's X and Y
: xy_n
\begin{tabular}{|c|c|c|c|}
\hline & 1 & 2 & 3 \\
\hline 1 & 0 & -1.666826963 & -1.969941497 \\
\hline 2 & 0 & . 5580258965 & -. 218987897 \\
\hline 3 & 1 & 1.054736972 & 1.894969106 \\
\hline
\end{tabular}
: deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
: score_fn= deriv(D, 1) // <--- Perform the numerical derivation!
: score_fn // Display it
    1 2
1
.006871893 . 0281603095
: end
```


The Solution [5]: Score functions of the entire sample

- Now that we know how to perform the derivative of a function we can apply it to the whole sample (e.g., to all the individuals in the sample):

```
mata:
```

```
D = deriv_init()
```

D = deriv_init()
// Init deriv() 'struct"
deriv_init_evaluator(D, \&LL_d()) // 'struct' D is prodived with the pointer LL_d()
deriv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
: score_fn = J(0, cols(betas),.) // Vector length Oxcols(betas)
for (n=1; n <= N; ++n) { // Looping over n individuals
xy_n = panelsubmatrix(XY, n, paninfo) // Extract submatrix of individual n
deriv_init_params(D, betas) // provide D with beta estimates
deriv_init_argument(D, 1, xy_n) // provide D with attributes values
score_fn = score_fn \ deriv(D, 1) // Collect score functions from each individual
}
}
: score_fn[1..4,] // display the score functions of the first 4 individuals
1 2
1 2
.006871893
.006871893
// Finally, we save the score functions as S just for a handy matrix multiplication afterwards.
:S = score_fn
: end

```

6 The Solution [6]: Obtaining the robust correction
- All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.

\section*{The Solution [6]: Obtaining the robust correction}
- All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.
\[
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{2}
\end{equation*}
\]

\section*{6 The Solution [6]: Obtaining the robust correction}
- All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.
\[
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{2}
\end{equation*}
\]
- \(\boldsymbol{W}=-H^{-1}\) is the negative of the inverse of the hessian (Object W ).

\section*{The Solution [6]: Obtaining the robust correction}
- All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.
\[
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{2}
\end{equation*}
\]
- \(\boldsymbol{W}=-H^{-1}\) is the negative of the inverse of the hessian (Object \(W\) ).
- \(\boldsymbol{u}_{n}=\boldsymbol{S}\left(\widehat{\boldsymbol{\beta}} ; y_{n}, \boldsymbol{x}_{n}\right)\) are row vectors that contains the score functions evaluated at \(\widehat{\boldsymbol{\beta}}\) (Object S ).

\section*{The Solution [6]: Obtaining the robust correction}
- All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.
\[
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{2}
\end{equation*}
\]
- \(\boldsymbol{W}=-H^{-1}\) is the negative of the inverse of the hessian (Object W ).
- \(\boldsymbol{u}_{n}=\boldsymbol{S}\left(\widehat{\boldsymbol{\beta}} ; y_{n}, \boldsymbol{x}_{n}\right)\) are row vectors that contains the score functions evaluated at \(\widehat{\boldsymbol{\beta}}\) (Object S ).
- Accordingly, it is as simple as:

\section*{The Solution [6]: Obtaining the robust correction}
- All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.
\[
\begin{equation*}
\widehat{V}(\widehat{\boldsymbol{\beta}})=\boldsymbol{W}\left(\frac{N}{N-1} \sum_{n=1}^{N} \boldsymbol{u}_{n}^{\prime} \boldsymbol{u}_{n}\right) \boldsymbol{W} \tag{2}
\end{equation*}
\]
- \(\boldsymbol{W}=-H^{-1}\) is the negative of the inverse of the hessian (Object W ).
- \(\boldsymbol{u}_{n}=\boldsymbol{S}\left(\widehat{\boldsymbol{\beta}} ; y_{n}, \boldsymbol{x}_{n}\right)\) are row vectors that contains the score functions evaluated at \(\widehat{\boldsymbol{\beta}}\) (Object \(S\) ).
- Accordingly, it is as simple as:
\begin{tabular}{ll}
. mata: \\
\hline : meat \(=(N /(N-1)) * S^{-} * S\) & mata (type end to exit) \\
\(: V_{-} r o b u s t \_a p p r o x=W *\) meat \(* W\) & \(/ /\) Approximated robust variance-covariance matrix. \\
\(:\) st_matrix("V_robust_approx", V_robust_approx) // Save robust matrix into a Stata Matrix. \\
\(:\) end
\end{tabular}

\section*{6 The Solution [7]: Checking our approximation}
- Using V_robust_approx we can check how far are our numerically approximated robust covariance matrices compared with Stata's clogit.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Conditional (fixed-effects) logistic regression} \\
\hline & & & & Number of obs & 300 \\
\hline & & & & Wald chi2(2) & 42.15 \\
\hline & & & & Prob > chi2 & 0.0000 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Log pseudolikelihood \(=-53.10466\)}} & & Pseudo R2 & 0.5166 \\
\hline & & & \multicolumn{3}{|l|}{(Std. Err. adjusted for clustering on id)} \\
\hline \multirow[b]{2}{*}{choice} & \multicolumn{2}{|r|}{Robust} & \multirow[b]{2}{*}{z} & \multirow[b]{2}{*}{\(\mathrm{P}>|\mathrm{z}| \quad[95 \%\)} & \multirow[b]{2}{*}{Conf. Interval]} \\
\hline & Coef. & Std. Err. & & & \\
\hline x 1 & . 5233348 & . 1587735 & 3.30 & 0.001 .212 & . 8345252 \\
\hline x2 & 1.922775 & . 3334521 & 5.77 & \(0.000 \quad 1.2\) & 2.576329 \\
\hline
\end{tabular}
```

. mat V_robust_clogit = e(V)
. mat li V_robust_approx
symmetric V_robust_approx[2,2]
c1
r1 . 02520903
r2 . 00291664 . }1111903
. mat li V_robust_clogit
symmetric V_robust_clogit[2,2]
choice: choice:
x1 x2
choice:x1 . 02520903
choice:x2 .00291664 . }1111903
. display mreldif(V_robust_approx, V_robust_clogit)
7.734e-09

```

\section*{7 Outline}
(1) Introduction
(2) The ml command
(3) Linear-form Restriction
(4) The Problem
(5) Robust Variance Covariance Matrix: A very brief review
(6) The Solution
(7) Conclusions

\section*{7 Conclusions}
- We have seen a workaround for those *rare* cases when the ml command fails to produce robust standard errors.

\section*{7 Conclusions}
- We have seen a workaround for those *rare* cases when the ml command fails to produce robust standard errors.
- The illustrated solution is not meant to replace the algebraic computation of the score functions, but a complement and a way to check our results.

\section*{7 Conclusions}
- We have seen a workaround for those *rare* cases when the ml command fails to produce robust standard errors.
- The illustrated solution is not meant to replace the algebraic computation of the score functions, but a complement and a way to check our results.
- All the source code of this talk is available at this GitHub © repository.

\section*{7 Conclusions}
- We have seen a workaround for those *rare* cases when the ml command fails to produce robust standard errors.
- The illustrated solution is not meant to replace the algebraic computation of the score functions, but a complement and a way to check our results.
- All the source code of this talk is available at this GitHub © repository.
- Bonus track: Further readings about things we used but not I did not necessarily explained in much detail.

\section*{7 Conclusions}
- We have seen a workaround for those *rare* cases when the ml command fails to produce robust standard errors.
- The illustrated solution is not meant to replace the algebraic computation of the score functions, but a complement and a way to check our results.
- All the source code of this talk is available at this GitHub © repository.
- Bonus track: Further readings about things we used but not I did not necessarily explained in much detail.
- Gould (2007) for a better understanding about -struct- type objects.

\section*{7 Conclusions}
- We have seen a workaround for those *rare* cases when the ml command fails to produce robust standard errors.
- The illustrated solution is not meant to replace the algebraic computation of the score functions, but a complement and a way to check our results.
- All the source code of this talk is available at this GitHub © repository.
- Bonus track: Further readings about things we used but not I did not necessarily explained in much detail.
- Gould (2007) for a better understanding about -struct- type objects.
- Gould (2018) Section 3.4.4 for a detailed explanation about -\&pointers-.

\section*{7 Conclusions}
- We have seen a workaround for those *rare* cases when the ml command fails to produce robust standard errors.
- The illustrated solution is not meant to replace the algebraic computation of the score functions, but a complement and a way to check our results.
- All the source code of this talk is available at this GitHub repository.
- Bonus track: Further readings about things we used but not I did not necessarily explained in much detail.
- Gould (2007) for a better understanding about -struct- type objects.
- Gould (2018) Section 3.4.4 for a detailed explanation about -\&pointers-.
- Gould (2001) for more insights about Statistical Software Certification.

\section*{8 Outline}
(1) Introduction
(2) The ml command
(3) Linear-form Restriction
(4) The Problem
(5) Robust Variance Covariance Matrix: A very brief review
(6) The Solution
(7) Conclusions

\section*{9 Bibliography}

Gould, W. (2001). Statistical software certification. The Stata Journal, 1(1):29-50.
Gould, W. (2007). Mata matters: Structures. The Stata Journal, 7(4):556-570.
Gould, W., Pitblado, J., and Poi, B. (2010). Maximum Likelihood Estimation with Stata. StataCorp LP, 4th edition.

Gould, W. W. (2018). The Mata Book: A Book for Serious Programmers and Those who Want to be. Stata Press.

\section*{10 Outline}
(9) MyClogit
(10) MyLikelihood_LL.mata

\section*{10 MyClogit.ado}
```

program MyClogit
version 12
if replay() {
if ("`e(cmd)`" != "MyClogit") error 301
Replay `0' _ Rep else Estimate '0' end program Estimate, eclass sortpreserve syntax varlist(fv) [if] [in] , GRoup(varname) /// [TECHnique(passthru) noLOg ROBUST] local mlopts "technique" if ("`technique"" == "technique(bhhh)") {
di in red "technique(bhhh) is not allowed."
exit 498
}
gettoken lhs rhs : varlist
marksample touse
markout 'touse' 'group'
global MY_panel = "`group"" ml model dO MyLikelihood_LL() /// (MyClogit: 'lhs' = 'rhs`, nocons) ///
if `touse`, missing first `log` ///
title("MyClogit") 'robust` maximize // Show model ereturn local cmd MyClogit Replay , level(`level`) ereturn local cmdline ""`0"".
end
program Replay
syntax [, Level(cilevel)]
ml display , level(`level`)
end
// include mata functions from MyLikelihood_LL.mata
findfile "MyLikelihood_LL.mata"
do "`r(fn)""

```

\section*{11 Outline}
(9) MyClogit
(10) MyLikelihood_LL.mata

\section*{11 MyLikelihood_LL.mata}
```

mata:
void MyLikelihood_LL(transmorphic scalar M, real scalar todo,
real rowvector b, real scalar lnf,
real rowvector g, real matrix H)
{
// variables declaration
real matrix panvar
real matrix paninfo
real scalar npanels
real scalar n
real matrix Y
real matrix X
real matrix x_n
real matrix y_n
Y = moptimize_util_depvar(M, 1) // Response Variable
X = moptimize_init_eq_indepvars(M,1) // Attributes
id_beta_eq=moptimize_util_eq_indices(M,1) // id parameters
betas= b[lid_beta_eq|] // parameters
st_view(panvar = ., ., st_global("MY_panel"))
paninfo = panelsetup(panvar, 1)
npanels = panelstats(paninfo) [1]
lnfj = J(npanels, 1, 0) // object to store loglikelihood
for(n=1; n <= npanels; ++n) {
x_n = panelsubmatrix(X, n, paninfo)
y_n = panelsubmatrix(Y, n, paninfo)
U_n =exp(rowsum(betas :* x_n)) // Linear utility
p_i = colsum(U_n:* y_n) / colsum(U_n) // Probability of each alternative
lnfj[n] = ln(p_i) // Add contribution to the likelihood
}
lnf = moptimize_util_sum(M, lnfj)
}
end

```
```

