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Why this command? 

Suppose you: 

 -- have a dataset that involves more than one count-valued outcome variables, 

and they are potentially correlated. 

 -- assume a fully parametrically specification [e.g. the joint probability mass 

function of the outcome variables] conditional on regressors. 

 -- want to make causal inference in terms of the average treatment effects (ATEs). 

 

We offer a Stata package command on estimating the deep parameters under the 

context of bivariate count data. 

(a post-estimation command on average treatment effects is forthcoming) 
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Why this command? (Cont’d) 

Widely application in empirical research: 

Example 1: 

Prediction of traffic crash counts of: (1) fatal crashes, (2) property damage-only 

crashes using multiple inter-dependent sources of risk. 

Example 2: 

Investigating the association of Medicaid expansion with: (1) number of Ambulatory 

Care Sensitive Condition ED admissions, (2) number of Non-ED Outpatient Visits. 

Example 3: 

 

Estimating the causal effects of private insurance status on: (1) Physician office visits, 

(2) Non-physician health professional office visits.  
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Our Contribution 

--bivpoisson estimates the deep parameters for 2-dimensional correlated count data 

--bivpoisson achieves higher precision in terms of deep parameter estimates 

(compared to fitting a count valued system-of-equations using linear seemingly 

unrelated regression model via command “sureg”). 
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Our Contribution (Cont’d) 

-- bivpoisson adds additional new functionality to Stata’s “gsem” class command: 

-- “gsem” (Stata’s Structural Equation Modeling command class) offers many 

options in family and link functions1 for system-of-equation estimation.  

--  however, “gsem” does not allow Gaussian + Poisson combination:  

  

 

1 See gsem family-and-link options (in Stata, type: help gsem family and link options) 
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Outline 

In the rest of this presentation, we will: 

-- Detail the fully parametric specification  

 -- Describe bivpoisson command 

 -- Provide a real-world application  

-- Discussion of future works 
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Specification 

--A structural model on correlated-count outcomes: 

pmf(Y
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*, Y
2X

* | Xo)  = ∫ ∫ poi
1
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∗
) × poi

2
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∗
)
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 [Y
1X

*     Y
2X

*] ≡ bivariate vector of count-valued potential outcomes. 

 poi
r
(Y

rX*; λr
∗
) ≡ the pmf of the Poisson distributed r.v. Y

rX* with parameters λr
∗
, 

with λr
∗
 ≡ exp(Xoβ

ro
+ X*β

rX
   +  η

r
), r = 1, 2. 
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Specification (cont’d) 

and 

 Xo ≡ the vector of observable control variables,   

X*≡ counterfactually mandated version of the causal variable (any type) 

and the parameters to be estimated are β
ro

, β
rX

, and ρ
12

. 

 

 

 

This model is designed to exploit possible statistical efficiency in estimation by taking 

explicit (parametric) account of cross-equation correlation through the bivariate 

normal  mixture component (essentially ρ
12

). 
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Specification (cont’d) 

Suppose that the requisite conditions establishing the legitimacy of following aspect 

of the data generating process specification are satisfied: 

pmf(Y1, Y2 | Xo, X)  = ∫ ∫ pois
1
[(Y1; λ1) × pois

2
(Y2; λ2)

∞

─ ∞

∞

─ ∞

 

       × φ
2
(𝛈1, 𝛈2; ρ

12
)] d𝛈1 d𝛈2   (4) 

 

 [Y1     Y2] ≡ the observable version of the outcome vector 

 

 X ≡ the observable version of the causal variable 

 

λr ≡ exp(Xoβ
ro

+ Xβ
rX

   +  𝛈r) for r = 1, 2 
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The New Command bivpoisson 

--Syntax 

bivpoisson (depvar1 = indepvar1) (depvar2 = indepvar2) [if] 

where: 

depvar1 = count-valued dependent variable for equation 1 

depvar2 = count-valued dependent variable for equation 2 

indepvar1 = vector of independent variables for equation 1 

indepvar2 = vector of independent variables for equation 2 

(indepvar1 and indepvar2 can be different or the same) 

--Options  

[if] allows computing results by subpopulations 
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The New Command bivpoisson 

--Warning Message: 

depvar1 is zero-inflated 

or  

depvar2 is zero-inflated 

r(2000); 

will show up when a dependent variable has mean less than 1 (indicating there are 

too many zero values in the dependent variable). 

--In current version, optimization is unlikely to converge when data is zero-inflated.  

--A two-part model is needed for each zero-inflated equation (future work). 
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Example Output 
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Example Return List 
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Application  

 

-- Use a health survey dataset “the 1987 National Medical Expenditure Survey 

Data” 

--This data is used by many previous works such as Deb and Trivedi (1997), Chib 

and Winkelmann (2001), and Famoye (2015). 

--Policy Relevancy: Causal effects of insurance coverage on use of health services. 
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Application (cont’d) 

Variables we use: 

--depvar1 = the number of physician office visits, denoted ofp 

--depvar2 = the number of non-physician office visits, denoted ofnp  

--indepvar1 = [Private Insurance Status, Black, Number of Chronic Conditions, 

Constant Term], denoted by: [privins, black, numchron,1]  

--indepvar2 = [Private Insurance Status, Black, Number of Chronic Conditions, 

Age, Constant Term], denoted by [privins, black, numchron, age,1] 

 

  



16 

 

Example (cont’d) 

Access the dataset:  

--In Stata, type: 

use https://github.com/zhangyl334/bivpoisson/raw/main/Health_Data.dta 

--Then type: 

bivpoisson (ofp = privins black numchron) (ofnp = privins black numchron age) 

  

https://github.com/zhangyl334/bivpoisson/raw/main/Health_Data.dta
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Example (cont’d) 

 

  

Equation1’s 

coefficient estimates  

Equation2’s 

coefficient estimates  

Ancillary parameter 

estimates  
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Exploring Estimator’s Statistical Property  

Simulation study shows seemingly unrelated count regression (bivpoisson) 

achieves better precision than linear seemingly unrelated regression (sureg) in 

ATE. 

   Poisson SUR Linear SUR 

Design ρ
12

 
True 

ATE 

Average 

ATE 
AAPB 

Average 

ATE 
AAPB 

1 

(Over-Dispersed 

Correlated Counts) 

Omega = −𝟎. 𝟏 

0.75  4.765 4.035 34.19% 2.185 53.06% 

0.5 4.767 4.265 36.93% 2.191 52.89% 

0.25 4.767 4.147 35.53% 2.213 52.57% 

0 4.767 4.224  36.27% 2.209 52.64% 

100 replications with 10,000 observations for each replication 

 

 

-- AAPB’s formula:  

AAPB ATE(∆)̂   = 
1

R
× ∑ |

ATE(∆)̂
r-ATE(∆)

ATE(∆)
|R

r=1            (5) 
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Exploring Estimator’s Statistical Property (Cont’d) 

Estimating the effects of private insurance status on 2 correlated health utilization 

counts (sureg versus bivpoisson) 

Average Treatment Effects:  

Private Insurance Status on Two Correlated Health Care Utilization Counts 

  

Linear Seemingly Unrelated 

Regression (SUR) Model 

Count-Outcome SUR Model  

(Poisson case) 

  ATE S.E. T-Stat 

P-

Value ATE S.E. T-Stat 

P-

Value 

Count of Physician 

Office Visits (𝐘𝟏) 1.6302 0.2784 5.8536    

 

0.0000 1.8830 0.5036 3.7400 0.0002 

Count of Non-

Physician Office 

Visits (𝐘𝟐) 

 

0.5958 

  

0.2288 2.6034   

 

0.0092   4.0088 0.4783 3.7470 0.0002 
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Future works 

--post estimation command:  

bivpoisson_predi 

bivpoisson_ate 

--Include a plug-and-play feature for more choices of marginal distributions: 

Conway-Maxwell-Poisson (CMP), Negative Binomial (NB), Zero-inflated negative 

binomial (ZINB) regression. 

--Increase the dimensionality of the correlated outcome to 3+. 
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Discussion and Conclusion 

--Introduced new community contributed package “bivpoisson” to estimate 2-

dimensional correlated count-valued data. 

--Applied to a health care survey dataset. 

--Compared to Linear SUR (by Stata command: sureg) and show precision gain in 

policy effect estimation. 
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Thank you! 

 

Contact: Abbie Zhang 

Email: zhangyl334@gmail.com 

GitHub Repository: https://github.com/zhangyl334/bivpoisson 

Twitter: @abbiezhang_econ 

Website: yileizhang.com 

 

  

mailto:zhangyl334@gmail.com
https://github.com/zhangyl334/bivpoisson
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Appendix 

Simulation Study Design 

For each of these designs, 100 sample of size 10,000 were generated. In each 

replication, we 

-- calculate true ATE 

-- estimate deep parameters using both Zellner’s Linear SUR model and Count-

Outcome CMP SUR model with our simulated bivariate CMP data 

-- calculate the averaged estimated AIE and the averaged absolute percent bias 

(AAPB) of ATE using both models. 

-- compare estimated ATEs and AAPBs of both models, and to true ATE 
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Appendix 

More Simulation Results 

(Conway Maxwell Poisson SUR versus Linear SUR) 

   CMP SUR Linear SUR 

Design ρ
12

 
True 

ATE 

Average 

ATE() 

AAPB 

ATE() 

Average 

ATE() 

AAPB 

ATE() 

1 

(Over-Dispersed 

Correlated Counts) 

Omega = −𝟎. 𝟏 

0.75  4.765 4.502 10.48% 2.185 53.06% 

0.5 4.767 4.865 25.48% 2.191 52.89% 

0.25 4.767 4.502 19.00% 2.213 52.57% 

0 4.767 4.7079 26.87% 2.209 52.64% 

100 replications with 10,000 observations for each replication 

 

 

Takeaways: 

--The accuracy and efficiency gains with CMP SUR estimator persist across all correlation structures 

--The efficiency gains tend to increase with the correlations among the count outcomes  
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Appendix 

ATE Estimation under the General Potential Outcome Framework 

 

- Estimated ATE formula: 

ATE(∆)̂  = ∑
𝟏

𝐧

𝐧

𝐢=𝟏

{m(X𝐢
pre + Δ𝐢, Xoi; 𝛑̂)] - E[m(X𝐢

pre, Xoi; 𝛑̂) 


