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How our work fits in to Stata conference

» | direct UCSF Statistical Laboratory for Aging Research (10
full time statisticians; based out of Pepper Center and
Division of Geriatrics)

» Team-science framework with emphasis on deep, longitudinal
collaboration with clinical researchers

» We are not currently Stata programming experts at level of
others in this conference

» Historically, users of Stata, and users/programmers in SAS/R

» Stata-specific tools have become incredibly useful for our
research in general (e.g. margins, svy, mi) and specifically
for today's topic (e.g. ipdfc, meta, bayes:streg, bayesmh)

» Have end-to-end Stata script for this project; hope to create
proper Stata command in near future

> Stata potentially better fit at UCSF (e.g. training in clinical
research is Stata-centric from Vittinghoff et al. textbook)



Topics for today

» Reconstruction of individual patient survival data from
Kaplan-Meier figures in publications of clinical trials

» Alternatives to hazard ratios (time to benefit; difference in
restricted mean survival)

» Estimation of these with Bayesian parametric survival

» Combining across multiple studies (meta-analysis)



Meta-analysis worksheet
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Reconstruction of individual patient data

» Clinical trials often publish Kaplan-Meier curves for each arm
and hazard ratio with 95% ClI

> If want to look at other metrics, would be great if had the
individual patient data

» Turns out this can be reconstructed from the Kaplan-Meier
curves with high fidelity (Guyot 2012; Parmar 1998; Earle
2002)

> First step: extract the coordinates of the steps on the figure

and number at risk information

» Second step: use this info to figure out number of events and
censored at each jump in curve; this allows creation of a
standard individual patient dataset



First step: a picture worth a thousand numbers

» Numerous packages and methods to turn a figure from a
published paper back into the underlying numbers

» Raster figures: ycasd (Gross 2013), g3plot, WebPlotDigitizer,
Engauge, Digitizelt

» Vector figures: exact numbers are computable from file and
can be extracted (Liu 2015)



Example (Perren et al. 2011, NEJM)
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Example extraction
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Extraction in process (2)
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Result of extraction (3
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Second step: infer the individual patient data

» ipdfc package (Wei and Royston, 2017)

» Start with the sheet created by digital extraction (one line per
step in the KM curve)

» Convert to one line per patient data with a time variable and
event indicator (event vs. censored)

» Many options to improve fidelity of reconstruction



Working with ipdfc in Stata

Example 2: ICON7 trial

This example is from ICON7, a two-arm randomized controlled trial of bevacizumab in advanced ovarian cancer (Perren et a
probabilities instead of percentages were extracted across 30 months of follow up. The following code shows how to use
extracted survival probabilities to time-to-event data.

. local tot0=464

. local totl=470

. import delimited using "ICON7_data_arm@.txt", clear

. ipdfc, surv(s) tstart(ts) trisk(trisk) nrisk(nrisk) generate(t_ipd event_ipd) saving(temp®, replace) probability i
totevents( tot0')

. import delimited using "ICON7_data_arml.txt", clear

. ipdfc, surv(s) tstart(ts) trisk(trisk) nrisk(nrisk) generate(t_ipd event_ipd) saving(templ, replace) probability i
totevents( totl')

The following code amalgamates the data from both arms and then conducts survival analysis.

use temp®, clear

generate byte arm = @

append using templ

replace arm = 1 if missing(arm)

stset t_ipd, failure(event_ipd)

stcox arm

sts graph, by(arm) xlabel(0(3)30) ylabel(0(0.2)1) risktable(@(6)30, order(l "Bevacizumab" 2 "Standard chemo-")) le
xtitle("Months since randomization") 12title("Alive without progression") plotlopts(lpattern(solid) lcolor(gsl2)
plot2opts(lpattern(solid) lcolor(black)) text(-0.38 -3.2 "therapy") text(@.75 14 "Bevacizumab", place(e)) text(®
chemotherapy")



The reconstructed KM curves for the inferred data
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Summary of reconstructing IPD

» Clinical trials often publish Kaplan-Meier curves for each arm
and hazard ratio with 95% Cl

» Use specialized software to digitally extract the underlying
coordinates of the Kaplan-Meier curves

» Run ipdfc to create a one line per participant version of the
original survival data

> Why go to this trouble? Lots of things we can do with these
data (e.g fit our own survival models, calculate other metrics
besides hazard ratio)



Metrics of interest

» Hazard ratio is useful for comparing survival curves, but there
are other quantities of interest

» Difference in Restricted Mean Survival Time (RMST; Royston
& Parmar, 2013) is popular with statisticians and is clinically
interpretable

» Time to Benefit (TTB) less well known but extremely
appealing to clinical researchers to weigh risks and benefits
(Lee, 2013)



Restricted Mean Survival Time (RMST)

> For one arm, RMST (t) = [ S(u)du is the area under the
survival curve out to some given time t

» Difference in RMST, dRMST (t) = RMST(t) — RMSTO(t),
is the area between the survival curves out to that time

> Interpreted as average gain in life from intervention over a
t-year period

» Can compute this using non-parametric Kaplan Meier curves
or by fitting a parametric model

» We use parametric models (e.g. Weibull or Gompertz) for
simplicity/stability of estimation

> Bayesian estimation of the parametric survival curves makes
computation of both estimate and Cl straightforward



Time to Benefit

» TTB(r) is the amount of time until the survival curves are
separated by an absolute amount of risk r; TTB(r) = smallest
t such that St(t) — SO(t) > r

» Suppose survival curves are separated by r = 0.01 at 3 years

» Then the number needed to treat (NNT) to save one life with
the intervention is 100 patients after 3 years

» Can compare this to life expectancy of patient to aid in
decision-making

» And/or can contrast with the expected number out of 100
that will be harmed over 3 years (NNH)

» This framework is very natural for clinicians

» \We again use parametric models and Bayesian estimation to

make computation straightforward (so can do both TTB(r)
and dRMST (t) for same price!)



Time to Benefit examples in literature

» Statins for primary prevention of ASCVD (Yourman 2021): 30
months needed to avoid 1 MACE for 100 patients (r = 0.01)

» Intensive blood pressure treatment (Chen 2022): 19.1 months
needed to avoid 1 MACE per 200 patients (r = 0.005)

» Mammography for breast cancer (Lee 2013): 10.7 years
needed to avoid 1 breast cancer death per 1000 women
screened (r = 0.001)

» Bisphosphonates in osteoporosis (Deardorff 2020): 12.4
months to prevent 1 fracture in 100 women treated (r = 0.01)



TTB figure (Deardorff, 2020)

Nonvertebral fractures prevented

per 100 persons treated

34
2_
1.5
1.0
1_
0_
0 2 6 g8 10 (12) 1 16 (18

Months after treatment initiation



Bayesian analysis of TTB, RMST, etc. in a single study

» Weibull or Gompertz provide excellent fit in our settings

» We allow both parameters (shape and scale for Weibull) to be
different for two arms of study (4 parameters)

> \We start with the data set reconstructed from ipdfc and
then use bayes:streg to generate large number of MCMC
realizations from the posterior distribution of the four
parameters

» For each realization, we can create the Weibull survival curve
given those 4 parameters. RMST(t) and TTB(r) then
numerically evaluated

> Use posterior quantiles across the set of realizations to get
estimate and Cl for RMST(t) and TTB(r)



Bayesian TTB(r) in more detail

» Have simulations 61, ...,0p from the posterior distribution of
the survival curve parameters

» For each simulated parameter vector 6,,, create the survival
curves and solve for the first time they are more than r apart
(TTB(r)m)

—

» Take TTB(r) as median of TTB(r)1, ..., TTB(r)m

» Take the 2.5th and 97.5th percentiles as a 95% credible
interval



Bayesian dRMST (t) in more detail

» Have simulations 61, ...,0p from the posterior distribution of
the survival curve parameters

» For each simulated parameter vector 6,,, create survival
curves and take difference when numerically integrate them
from 0 to t (dRMSTt,)

o —

» Take dRMST (t) as median of the M values

» Take the 2.5th and 97.5th percentiles as a 95% credible
interval (or other methods)



TTB: fitting Weibull model

bayes: streg if trtgrp==0 , dist(weibull) nohr

Model summary

Likelihood:
_t ~ streg_weibull({_t:_cons},{ln_p})

;cuns} ~ normal(0,10000)
{ln_p} ~ normal(e,10000)

Bayesian Weibull PH regression MCMC iterations = 12,500
Random-walk Metropolis—Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
No. of subjects = 4243 Number of obs = 4,243
No. of failures =
Time at risk =165789.8329238
Acceptance rate .4285
Efficiency: min .006646
avg .006841
Log marginal-likelihood = -788.94239 max = .007036

| Equal-tailed
| Mean  Std. dev. MCSE Median [95% cred. interval

|
_cons | =7.129357 .333975 .040966 -7.112837 -7.851203 -6.508836

ln_p | .0208444 .0847516  .010104  .0202927 -.1411043 .1896877

Note: Default priors are used for model parameters.



TTB: plotting results from basic Weibull
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Calculate TTB from posterior simulations

/* GENERATE SURVIVAL USING THE RANDOM SAMPLES. */

Iforv t=1/120 {
generate surv_c't'

}
[forv t=1/120 {
generate surv_t't'

[forv t=1/120 {
generate surv_d't'

/* ESTIMATE LTTBs. */

exp(—(exp(b@_control)) % "t'~(exp(lnp_control)))

exp(—(exp(b0_treatment)) * "t'~(exp(lnp_treatment)))

surv_t t'-surv_c't'

/* Find the first time difference is bigger than 0.005%/

generate lttb_005=84

[forvalues t = 84(-1)1 {

replace lttb_005="t' if surv_d t'> 0.005

count if lttb_005==84

_pctile lttb_005, percentiles(2.5 25 50 75 97.5)

return list



Two ideas for meta-analyses of TTB, RMST, etc. across
multiple studies

1. Calculate estimate and Cl of TTB (or dRMST) for each study,
then meta-analyze with usual random-effects meta command
» Pros: straightforward to explain given similarity to how one
would typically do meta-analysis for hazard ratios
» Cons: does not easily handle curves that do not separate out
in time range of data

2. Use hierarchical model for the underlying Weibull parameters
(Ouwens 2010). This implies a (meta-analyzed) survival curve
in each group. Can calculate estimate and Cl for TTB for this
pair of meta-analyzed survival curves in same way as was done
for single curve

» Pros: Easily accomodates “null” studies that have arbitrarily
long TTB

» Cons: Need to program using bayesmh so not quite so easy to
implement



TTB (1): forest plot (Deardorff et al. 2020)
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TTB (1): summary of results (Deardorff et al. 2020)

Table 2. Time to Benefit of Bisphosphonate Therapy for the Prevention of Nonvertebral Fractures

Among Postmenopausal Women With Osteoporosis

Time to benefit (95% Cl), mo

Source Bisphosphonate type  ARR = 0.002° ARR = 0.005" ARR = 0.010°
Liberman et al, >3 1995 Alendronate 12.5(0.4-77.6) 16.6 (1.1-88.3) 22.7 (3.0-91.4)
Pols et al,>* 1999 Alendronate 3.4(0.6-10.6) 5.9(1.3-16.0) 10.0 (2.6-25.3)
Black et al,** 2000 Alendronate 6.9 (1.1-24.0) 10.3 (2.9-26.9) 15.4(6.0-32.8)
Harrington et al,** 2004 Risedronate 1.9(0.5-4.5) 3.5(1.0-9.0) 6.7 (2.1-15.7)
Black et al,*? 2007 Zoledronic acid 7.6 (2.0-20.6) 12.5(5.0-26.3) 19.9(10.1-35.3)
Summary time to benefit NA 3.3(0.2-6.5) 6.5(2.2-10.9) 12.4(6.3-18.4)
Test of heterogeneity

2% NA 0 0 0

P value NA .70 .56 .49




TTB (2): fully Bayesian hierarchical model

Data for study i, arm k ~ Weibull regression(,@fk),pfk))

(81", 81" tog p”. log p{"))  ~ N((8®). 5. log p¥, log pM), %)

i i

p(ﬂ(o), B 1og pl, log p), Y) o InverseWishart(X|A, v)

Fit with bayesmh random effects formulation. The two Weibull
survival curves with parameters (5(%, p(®) and (M), p(1)) are
thought of as the underlying survival curves for the control and
treatment arms



TTB (2): raw figures (Growdon et al., 2023)
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TTB (2): meta-analyzed curve (Growdon et al., 2023)
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TTB (2): results (Growdon et al., 2023)

TTB: Intensive Antihypertensive Therapy for Prevention of MACE
Median time to benefit (IQR?), mo

Study Trial length, mo  ARR=0.002®> ARR=0.005°  ARR=0.01¢
1 84 2(1,3) 3(2,5) 5(3,7)

2 48 2(2,3) 4(3,5) 7(5,9)

3 84 6 (4,11) 18 (11,31) 46 (30,>84)
4 48 2(1,2) 4(3,5) 8(6,10)

5 24 24(8,>24) | >24(>24,524) >24(>24,>24)
6 42 4(2,22) 21 (8,>42) >42 (29,>42)
7 60 1(1,2) 2(2,3) 4(3,6)

8 84 58(33,>84)  >84(68,>84) >84 (>84,>84)
9 54 11(7,14) 13 (10,17) 18 (14,22)
10 48 4(3,6) 12(9,17) 32 (24,>48)

Summary time to benefit 3(2,10) 8(5,37) 16 (9,>84)



Summary

» Use external digitization software and ipdfc to turn published
Kaplan-Meier curves from two arm trials into Stata datasets

» Analyze these data in Bayesian framework using the bayes
commands (i.e. create MCMC realizations of underlying
parameters)

» Use the simulated parameter realizations for inference on less
traditional metrics such as TTB(r) and dRMST (t)

» Can do this for single studies or in meta-analysis of multiple
studies

» Work in progress but let us know if you are interested!
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