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Motivation

(Unobserved) heterogeneity is practically everywhere in social sciences.

Let’s assume that all datasets are incomplete up to some point.
Can lead to severe omitted-variable bias if the missing information is correlated
with the observed information.
Perfect randomization is often impractical and expected values (β, ATE,
ATET, etc.) of coefficients ”mask” the heterogeneity in the distributions.

One can try to solve the problem by grouping/clustering homogeneous units
altogether.

Homogeneity is conditional on both observed and unobserved information.
This helps to recover meaningful estimates and/or to get a sense of the
distribution of the coefficient(s) of interest.
What should we do when the true grouping pattern (e.g. the cohort in
heterogeneous DID) is unobserved?
People do change! In panel data analysis, the true grouping pattern might
change over time.
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Motivation - The Frailty example

Frailty is defined as
a state of
vulnerability in
elders.

Individuals who
share the same
frailty level will also
react similarly to
health adverse
events and new
diagnoses.

Frailty is usually
unobserved in both
clinical and
administrative
health data.

Figure 1: Clinical Frailty Scale (CFS) from Dalhousie University [Rockwood and
Mitnitski, 2007]. The scale goes from 1 (Very fit) to 9 (Terminally ill).
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Motivation

Finite mixtures and latent class analysis have been extensively used to account
for such unobserved heterogeneity in applied work. But not without major
issues.

The objective function is usually multimodal, so you need to try multiple initial
parameter values even in the simplest cases (abstract from that for now).
Estimates can be very imprecise and unstable.
Contrary to the common belief, I show that consistency of MLE of finite
mixtures is never guaranteed in practice.

I show how we can get consistent estimates of all parameters in the mixture
by maximizing a different objective function than the objective used in both
the fmm and gsem commands.

There is no Stata command yet, but it would be easy to add an additional
subcommand to the cluster command to integrate such a consistent
estimation procedure.
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General framework

Let’s define the following mixture density :

f (yit |xit ; θ, π) :=
G∑

g=1

πg fg (yit |xit ; θg ) ≡
G∑

g=1

πg fg (yit |xit ; θ) (1)

i = {1, ..,N}, t = {1, ..,T},
yit is a univariate outcome (discrete or continuous),
xit is a p-sized vector of strictly exogenous covariates,
fg (·|·; θg ) is the density of the g th component in the mixture,
there is G < ∞ ∈ N+ groups of observations, where G is known, but the true
group membership is unknown,
π = (π1, ..., πG ) ∈ Π is a vector of mixing weights to estimate, with πg ∈ (0, 1)
for each g ∈ {1, ...,G} = G, and with

∑G
g=1 πg = 1,

θ = (θ1, ..., θG ) ∈ Θ ⊂ Rp×G contains all the parameters for each fg (·).

The mixture log likelihood function is defined as follows :

L(θ, π) :=
N∑
i=1

T∑
t=1

log(
G∑

g=1

πg fg (yit |xit ; θg )) (2)
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General framework

For each dataset (x, y) ∈ RNT×(p+1), there exists a set of true parameters,
denoted by (θ0, π0), such that

f (yit |xit ; θ0, π0) =
G∑

g=1

π0
g fg (yit |xit ; θ0g ). (3)

Let’s define the true grouping variable as follows

z0itg :=

{
1 if and only if yit is generated by fg (·|xit ; θ0g ),
0 otherwise.

(4)

The g th true mixing weight, π0
g , is such that

N∑
i=1

T∑
t=1

z0itg
NT

p−→ E[z0g ] = π0
g , (5)

as N and T both tend to infinity.
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Literature review

This general setup is very flexible and has been namely used in :

Health economics to recover unobserved types of patients [Deb and Trivedi,
1997, 2002, Conway and Deb, 2005] and model the tail distribution of
healthcare expenditures [Jones et al., 2015, 2016, Kasteridis et al., 2022];
Labour economics to model duration of unemployment spells and career
decisions of young men [Heckman and Singer, 1984, Keane and Wolpin, 1997];
Econometric theory where the mixture density is estimated non-parametrically
[Kasahara and Shimotsu, 2009, Compiani and Kitamura, 2016];
The March 2023 issue of the Stata journal [Jenkins and Rios-Avila, 2023].

In the parametric case, the maximization of L(θ, π) with respect to θ and π is
(almost) always carried out by the expectation-maximization (EM) algorithm
[Dempster et al., 1977].

Any algorithm that can globally maximize L(θ, π) with respect to θ and π is
assumed to yield consistent estimates due to the strong consistency property
of maximum lilkelihood estimation (MLE) [Wald, 1949, Redner and Walker,
1984, Chen, 2017].
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Contributions to the literature

”Perhaps the most troublesome implication of [the obtained results] is that, if
the component densities are poorly separated, then impractically large sample
sizes might be required in order to expect even moderately precise
maximum-likelihood estimates.” Redner and Walker [1984].

I show that globally maximizing the mixture log likelihood function as shown
in (2) does not yield consistent estimates under mild regularity conditions.

I show that maximizing the max-component log likelihood function will lead
to consistent estimators of all parameters in the mixture (including the mixing
weights) under certain assumptions.

The K-means and the classification EM (CEM) algorithms both maximize this
objective function.
K-means and CEM yield consistent estimates if group membership is assumed
to be constant over time for all units [Bonhomme and Manresa, 2015].
Some authors have tried to relax this assumption, but never completely
[Lumsdaine et al., 2023, Okui and Wang, 2021].
It is possible to get consistent estimates with unrestricted group membership
(as claimed in the classical setup) if the G joint densities of the covariates and
the outcome are asymptotically non-overlapping.
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Regularity conditions

Assumption 1

1 (Generic identifiability) f (y|x; θ, π) = f (y|x; θ′, π′) ⇔ θ = θ′ and π = π′ for
any dataset (x, y) ∈ RNT×(p+1), up to any ”label switching”, and assuming
that G is known (see Section 1.3 of Frühwirth-Schnatter [2006]).

2 (Boundedness) E0[log f (yit |xit ; θ, π)] < ∞ for any θ ∈ Θ and any π ∈ Π.

3 (Common support) fg (yit |xit ; θg ) > 0 for all g ∈ G and all θg ∈ Θ, where all
components’ densities share the same support.

4 (Continuous differentiability) fg (yit |xit ; θg ) is continuously differentiable with
respect to θg for all g ∈ G.

Approximate MLE of π

The ”approximate” MLE of πg , denoted by πg (θ), is defined as follows

πg (θ) :=
1

NT

N∑
i=1

T∑
t=1

τitg (θ, π) =
1

NT

N∑
i=1

T∑
t=1

πg fg (yit |xit ; θg )∑G
l=1 πl fl(yit |xit ; θl)

, (6)

where
∑G

g=1 πg (θ) = 1 by construction [Redner and Walker, 1984]. Proof
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(In)consistency of MLE

Under continuous differentiability of the objective function with respect to θ,
consistent estimation of θ requires that

E0[s(θ)]
∣∣
θ=θ0 = E0

[
∂ log f (yit |xit ; θ, π(θ))

∂θ

] ∣∣∣∣
θ=θ0

= 0,

where E0 is the expected value with respect to the true mixture density.

This is equivalent to∫
Y

f (yit |xit ; θ0, π0)

f (yit |xit ; θ0, π(θ0))
∂f (yit |xit ; θ, π(θ))

∂θ
υ(dyit)

∣∣∣∣
θ=θ0

= 0.

If π(θ0)
p−→ π0, then the above condition reduces to∫

Y

∂f (yit |xit ; θ, π0)

∂θ
υ(dyit)

∣∣∣∣
θ=θ0

= 0,

which is always true if the limits of the integral is not a function of θ.

Raphaël Langevin Consistent Estimation of Finite Mixtures 9 / 30



(In)consistency of MLE

If π(θ0) does not converge to π0, then MLE is inconsistent by construction for
the mixing weights.

If we don’t care about π0, we still need to show that∫
Y

f (yit |xit ; θ0, π0)

f (yit |xit ; θ0, π(θ0))
∂f (yit |xit ; θ, π(θ))

∂θ

∣∣∣∣
θ=θ0

υ(dyit) = 0.

holds independently of the value to which π(θ0) will converge. This is not
easy to show and will not hold in most cases. Development of a two-component mixture

It is important to note that convergence of π(θ0) to π0 is not automatic (if
we don’t want to rely on any kind of circular argument). Example of a circular argument

Therefore, we have to find a way to guarantee that π(θ0)
p−→ π0 as

N,T → ∞. The problem is similar to the incidental parameter problem in
non-linear fixed effects models.
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(In)consistency of MLE

Let’s recall that

N∑
i=1

T∑
t=1

z0itg
NT

p−→ E[z0g ]̧ = π0
g .

Therefore, if

τitg (θ
0, π(θ0)) =

πg (θ
0)fg (yit |xit ; θ0g )∑G

l=1 πl(θ0)fl(yit |xit ; θ0l )
= z0itg ,

for all values of (yit , xit) ∈ Y|X and all g ∈ G, then we will have that

π(θ0)
p−→ π0 as N and T tend to infinity.

This will happen if and only if all component’s densities are infinitely distant
to each other (i.e. fg (yit |xit ; θ0g ) ≊ 0 for any g ̸= z0it and for all values of

(yit , xit) ∈ Y|X g , where ∩G
g=1Y|X g = ∅). Proof of convergence

It is very easy to see it graphically.
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(In)consistency of MLE

Figure 2
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(In)efficiency of MLE

It is never sure that maximizing the standard mixture log likelihood will
converge to the true parameter values unless π(θ0) = π0.

If the estimation procedure acts like if the true group membership were known
for all observations, then this procedure would share the so-called oracle
property and would be asymptotically efficient [Su et al., 2016].

The EM algorithm can never share this property since the assignment of each
observation to each group/component is probabilistic (τitg (θ, π) > 0).

I show how the K-means and the CEM algorithms can share the oracle
property without restricting group membership over time.
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The standard CEM algorithm

The ”standard” CEM algorithm maximizes the max-component log likelihood
function :

LMC (θ) :=
N∑
i=1

T∑
t=1

G∑
g=1

zitg (θ) log fg (yit |xit ; θg ), (7)

where

zitg (θ) :=

{
1 if g = argmax

l∈G
fl(yit , xit |θl),

0 otherwise.
(8)

Compare this to the standard mixture log likelihood (eq.(2)) :

L(θ, π) :=
N∑
i=1

T∑
t=1

log(
G∑

g=1

πg fg (yit |xit ; θg )).

The mixing weights become a by-product of the estimation procedure :

πMC
g (θ) :=

1

NT

N∑
i=1

T∑
t=1

zitg (θ)
p−→ E[zg (θ)]. (9)
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The consistent CEM algorithm

The standard CEM algorithm is known to be inconsistent, as the K-means
[Bryant and Williamson, 1978, Bryant, 1991, Celeux and Govaert, 1992].

To make the algorithm consistent, let’s use

zitg (θ, θ̌, p) :=

{
1 if g = argmax

l∈G
fl(yit , xit |θl , θ̌l)

0 otherwise,
(10)

instead of zitg (θ), where

fl(yit , xit |θl , θ̌l) := fl(yit |xit ; θl)
p∏

j=1

fl(xitj |θ̌lj), (11)

and where fl(xitj |θ̌lj) is the l th component’s density of the j th covariate in the
vector xit , with θ̌ = (θ̌1, ..., θ̌G ), and θ̌l = (θ̌l1, ..., θ̌lp)

⊤.

The algorithm then alternates between an expectation/assignment step
(E-step) and a conditional maximization step (M-step), just as does the EM
algorithm.
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The consistent CEM algorithm

Assumption 2

The j th element in xit , denoted by xitj , is distributed according to some true
density fg (xitj |θ̌0g ) ≡ fg (xitj |θ̌0) if and only if z0itg = 1. Let’s also define the
following ratio for xitj :

χitj(θ̌
0) := argmax

g∈G

fg (xitj |θ̌0)
fz0it (xitj |θ̌

0)
,

where z0it = g if and only if z0itg = 1. Then we assume that

P

 lim
p→∞

 fz0it (yit |xit ; θ
0)

fl(yit |xit ; θ0)
∏

j :χitj (θ̌0 )̸=l

fz0it (xitj |θ̌
0)

fl(xitj |θ̌0)
>

∏
j :χitj (θ̌0)=l

fl(xitj |θ̌0)
fz0it (xitj |θ̌

0)

 = 1,

for any l ∈ G\z0it and all values of i ∈ {1, ...,N} and all t ∈ {1, ...,T}.

plimN,T→∞ n0g = ∞ for all g ∈ G, where n0g =
∑N

i=1

∑T
t=1 z

0
itg .
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The consistent CEM algorithm

Theorem 3.2

Let Assumptions 1 and 2 hold. Let’s also define zitg (θ, θ̌, p) as in eq.(10). Then

zitg (θ
0, θ̌0, p)

p−→ z0itg for all values of (i , t) ∈ Y|X and all g ∈ G as p tends to

infinity. Proof of Theorem 3.2

Under Assumption 2, all observations in the sample will be correctly classified
at the true parameter values if the number of covariates is sufficiently large.

Standard asymptotics and inference from MLE will be applicable
component-wise if Assumption 2 hold as N,T → ∞ and if there is no
”cross-group” dependence.

The rate at which N, T , and p tend to infinity can remain undetermined, as
long as the classification error rate goes to zero in the limit when evaluated at
the true parameter values [Dzemski and Okui, 2021].

The second part of Assumption 2 says that the number of groups, G , cannot
grow faster than the number of observations within each group.
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Monte Carlo simulations

Two simulation exercises were performed.
The first one shows that MLE of finite mixtures leads to inconsistent estimates.
The second one compares the finite-sample performance of the EM algorithm
and the consistent CEM algorithm.

The first data-generating process (DGP) is described by :

yi = µ0
z0i
+ ϵi ,

where µ0 = (µ0
1, ..., µ

0
G ) refers to the vector of true mean value and where z0i

is the true i th group membership, with ϵi ∼ N(0, 1).

The second DGP is described by :

yit = x⊤it βz0it
+ x̄⊤i γz0it + δtz0it + αiz0it

+ ϵit ,

xitj = µ0
jz0it

+ νit ,

where δt and αi are time-fixed and unit-random effects, respectively. All
parameters vary across groups, except for ϵit ∼ N(0, 1) and νit ∼ N(0, 1). The
true categorical group membership z0it follows an AR(1) process.

Raphaël Langevin Consistent Estimation of Finite Mixtures 16 / 30



Results - First DGP, G 0 = 2, π0 = (0.5, 0.5)

Table 1 : Estimated values for each scenario of true mean values with G 0 = 2, π0 = (0.5, 0.5), equal unit

standard errors, and N = 1, 000, 000. µ0 = true mean values; π̂ = estimated mixing weights; µ̂ = estimated
mean values; σ̂ = estimated standard errors; CEM stands for the standard CEM algorithm.

The results confirm the insights given by Figure 2. All biases decrease as the
distance between the mean values increases.
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Results - First DGP, G 0 = 3, π0 = (0.167, 0.33, 0.5)

Table 2 : Root mean square errors (RMSEs) of the estimated mean values and differences in log likelihood with

G 0 = 3, π0 = (0.167, 0.33, 0.5), equal unit standard errors, and N = 1, 500, 000. E(θ0) = error classification

rate at the true parameter values, L(µ̂) − L(µ0) = distance between the log likelihood value evaluated at the
estimated mean values and the log likelihood value evaluated at the true mean values; CEM stands for the

standard CEM algorithm.
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Results - First DGP, G 0 = 3, π0 = (0.167, 0.33, 0.5)

Table 3 : Estimated values for each scenario of true mean values with G 0 = 3, π0 = (0.167, 0.33, 0.5), equal

unit standard errors, and N = 1, 500, 000. µ0 = true mean values; π̂ = estimated mixing weights; µ̂ =
estimated mean values; σ̂ = estimated standard errors.

The results show that convergence to the true values is not necessarily
happening when searching for the values that maximizes the standard mixture
likelihood. The conclusion is similar when maximizing the standard
max-component log likelihood function.
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Results - Second DGP, G 0 = 3, 0.25 < π0 < 0.4

Figure 3: Weighted RMSEs as a function of N when G 0 = 3, the classification error rate at the true parameter
values is equal to zero, and when looking at the highest log likelihood value only among all sets of initial values;
The true mixing weights vary between 0.25 and 0.4 for each component and for each value of N; CEM stands

for the consistent CEM algorithm.

The consistent CEM algorithm correctly classifies all observations for all
values of N in this setup, but not the EM algorithm.
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Results - Second DGP, G 0 = 3, 0.25 < π0 < 0.4

Figure 4: Average weighted RMSEs as a function of N when G 0 = 3, the classification error rate at the true
parameter values is equal to zero, and when looking at the weighted RMSE averaged over all sets of initial

values; The true mixing weights vary between 0.25 and 0.4 for each component and for each value of N; CEM
stands for the consistent CEM algorithm.

The consistent CEM algorithm yields results that are much less sensitive to
the choice of initial parameter values than the EM algorithm in this setup.
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Simulation results, G 0 = 3, 0.25 < π0 < 0.4

Table 4: Simulation results when G 0 = 3, T = 5, and when the model is correctly specified; ENT (θ) =
Classification error rate evaluated at θ; RMSEw = Weighted root mean square error;

π0 = (0.422, 0.276, 0.302) for N = 100, π0 = (0.453, 0.267, 0.280) for N = 300, π0 = (0.442, 0.267, 0.291)

for N = 500, and π0 = (0.439, 0.273, 0.288) for N = 1000; θ̂∗, ξ̂
∗
, and σ̂2,∗ correspond respectively to the

whole set of estimated parameter values, the mean coefficient estimates, and the variance estimates that are
associated with the highest log likelihood value. CEM stands for the consistent CEM algorithm.
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Simulation results, G 0 = 3, 0.088 < π0 < 0.54

Table 5: Simulation results when G 0 = 3, N = 500, T = 5, and when the model is both correctly and
incorrectly specified in terms of G ; π0 = (0.089, 0.535, 0.376) for all scenarios; ENT (θ) = Classification error

rate evaluated at θ; RMSEw = Weighted root mean square error; θ̂∗, ξ̂
∗
, and σ̂2,∗ correspond respectively to

the whole set of estimated parameter values, the mean coefficient estimates, and the variance estimates that
are associated with the highest log likelihood value. CEM stands for the consistent CEM algorithm.
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Empirical application

The goal is to model the healthcare expenditure (HCE) of a cohort of
non-institutionalized elders using administrative data from the province of
Québec, Canada.

I use a finite mixture of two-part models.
N = 1, 330, T = 7, and all periods are three-months long.
The covariates include a comorbidity indicator, a elder’s risk indicator (i.e. a
poor proxy of frailty), continuity of care, and gender.

The density of the outcome conditional on the covariates and θ is defined
generally as a two-part process by :

where xbit is the vector of covariates used in the binary part, and where dit is
equal to 1 if yit > 0 and zero otherwise.

The binary part is a Probit model while the continuous part is log-normal, both
using a Mundlak specification (as in the second simulation exercise).

Selection of the initial parameter values and the number of groups is
performed using BIC and cross-validation.
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Results - Empirical application

Table 6 : BIC values and root mean squared errors obtained by grouped 10-fold cross-validation for each one of
the five smallest BIC values obtained by random initialization; BIC = Bayesian information criterion, RMSECV

= Cross-validated root mean squared error (on the log outcome).
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Raphaël Langevin Consistent Estimation of Finite Mixtures 23 / 30



Results per group

Table 7 : Descriptive statistics of the observations contained within each group created by the preferred
specification when using the CEM algorithm.
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Results - Empirical application

Figure 5: Estimates of the time-fixed effects from the preferred specification with the CEM (left graphs) and
the EM (right graphs) algorithms for each group and each part of the model; The shaded areas correspond to
the cluster(unit)-robust 95% confidence interval and do not account for uncertainty in group membership.
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Results - Empirical application

Table 8 : Additional estimates of the binary part of the preferred specification obtained with the CEM
algorithm; Fully robust standard errors are shown in parenthesis; * = p-value< 0.05, ** = p-value< 0.01, ***

= p-value< 0.001.
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Results - Empirical application

Table 9 : Additional estimates of the continuous part of the preferred specification obtained with the CEM
algorithm; Fully robust standard errors are shown in parenthesis; * = p-value< 0.05, ** = p-value< 0.01, ***

= p-value< 0.001.
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Results - Empirical application

Figure 6: Proportions of the total number of observations in each group at each period (from the preferred
specification with the CEM algorithm). The total number of observations at each period is equal to

{1,330;1,330;1,330;1,326;1,317;1,308;1,305}.

The dynamic behaviour of the group membership is modeled in the second
step. The first step consistently estimates the group membership [Bonhomme
et al., 2019, 2022].
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Results - Empirical application

Figure 7: Transition matrix estimated from the grouping variable based on the preferred specification estimated
with the CEM algorithm.

Transitions into ”frailty” (groups 2 and 3) are more likely than transitions out
of ”frailty” groups.

Using exclusively group membership at period t to predict group membership
at period t + 1 correctly classifies 52.2% of all observations.

Using a dynamic multinomial logit model with all other covariates increases
this percentage to 61.6% (with only one lag).
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Conclusion

Simulation results confirm that maximizing the standard likelihood of a
mixture density leads to inconsistent estimates if the components’ densities
are not infinitely distant from each other.

Simulation results also show that the consistent CEM algorithm produces less
biased and more stable estimates than the EM algorithm in finite samples.

Estimation results using healthcare expenditures show that the consistent
CEM algorithm yields more credible estimates with smaller out-of-sample
prediction errors than the EM algorithm.

A two-step procedure is warranted to model the dynamics of the latent
variable under conditional independence of the outcome from past groupings.

The computational burden is an issue : more reliable and faster algorithms
need to be developed to reach the global maximum of the objective function.

All specifications in the first step are static. Introducing lagged dependent
variables and feedback effects are left for further research.
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Raphaël Langevin Consistent Estimation of Finite Mixtures 30 / 30

https://link.springer.com/10.1007/s11063-021-10599-3
https://www.jstor.org/stable/1911491
https://linkinghub.elsevier.com/retrieve/pii/S0304407612001479


References VI

Stephen P. Jenkins and Fernando Rios-Avila. Finite mixture models for linked
survey and administrative data: Estimation and postestimation. The Stata
Journal: Promoting communications on statistics and Stata, 23(1):53–85,
March 2023. ISSN 1536-867X, 1536-8734. doi: 10.1177/1536867X231161976.
URL http://journals.sagepub.com/doi/10.1177/1536867X231161976.

Andrew M. Jones, James Lomas, and Nigel Rice. Healthcare Cost Regressions:
Going Beyond the Mean to Estimate the Full Distribution. Health Economics,
24(9):1192–1212, 2015. ISSN 1099-1050. doi: 10.1002/hec.3178. URL
http://onlinelibrary.wiley.com/doi/abs/10.1002/hec.3178. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hec.3178.

Andrew M. Jones, James Lomas, Peter T. Moore, and Nigel Rice. A
quasi-Monte-Carlo comparison of parametric and semiparametric regression
methods for heavy-tailed and non-normal data: an application to healthcare
costs. Journal of the Royal Statistical Society: Series A (Statistics in Society),
179(4):951–974, 2016. ISSN 1467-985X. doi: 10.1111/rssa.12141. URL
http://onlinelibrary.wiley.com/doi/abs/10.1111/rssa.12141. eprint:
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssa.12141.
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”Approximate” MLE of π

Let’s define the g th posterior probability of the itth observation as follows :

τitg (θ, π) :=
πg fg (yit |xit ; θg )
f (yit |xit ; θ, π)

=
πg fg (yit |xit ; θg )∑G
l=1 πl fl(yit |xit ; θl)

, (12)

The probability τitg (θ, π) represents the probability that the itth observation
has arisen from the g th group’s/component’s density.

This comes from a direct application of Bayes’ rule on the unobserved
grouping variable z0itg .

Recall that

L(θ, π) =
N∑
i=1

T∑
t=1

log(
G∑

g=1

πg fg (yit |xit ; θg )).
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”Approximate” MLE of π

The mixture log likelihood function can be rewritten as [Dempster et al.,
1977, Celeux, 2019] :

L(θ, π) =
N∑
i=1

T∑
t=1

G∑
g=1

τitg log(πg fg (yit |xit ; θg ))−
N∑
i=1

T∑
t=1

G∑
g=1

τitg log τitg ,

where τitg ≡ τitg (θ, π), as defined above by eq.(12).

If τitg is taken as given (the ”approximation”), then we have that

∂L(θ, π)

∂πg
=

∂

∂πg

G∑
g=1

log πg

N∑
i=1

T∑
t=1

τitg .

By the properties of the cross-entropy function, the RHS is maximized when
πg = α

∑N
i=1

∑T
t=1 τitg where α is a normalizing constant. Imposing the unit

constraint
∑G

g=1 πg = 1 directly leads to α = 1
NT . Back to Assumption 1
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Development of the two-component mixture
Let’s look at the following two-component mixture density with no covariates.

f (yi |θ, π(θ)) := π1(θ)f1(yi |θ1) + π2(θ)f2(yi |θ2).

Note that π2(θ) = 1− π1(θ) and that π′
2(θ) = −π′

1(θ), where the prime notation stands as
the derivative with respect to θ. Hence, we get that the first-order consistency condition
can be written as follows

E0

[
π′
1(θ)(f1(yi |θ01)− f2(yi |θ02))

f (yi |θ0, π(θ0))

] ∣∣∣∣
θ=θ0

+

E0

[
π1(θ0)(f ′1 (yi |θ1)− f ′2 (yi |θ2))

f (yi |θ0, π(θ0))

] ∣∣∣∣
θ=θ0

+ E0

[
f ′2 (yi |θ2)

f (yi |θ0, π(θ0))

] ∣∣∣∣
θ=θ0

= 0.

For simplicity, let’s define the asymptotic mixing weights as follows

π1(θ
0) := E0

[
f1(yi |θ01)

f1(yi |θ01) + f2(yi |θ02)

]
> 0,

which leads to the following derivative :

π′
1(θ)

∣∣
θ=θ0

:= E0

[
f ′1 (yi |θ1)f2(yi |θ02)− f1(yi |θ01)f ′2 (yi |θ2)

(f1(yi |θ01) + f2(yi |θ02))2

] ∣∣∣∣
θ=θ0

⋚ 0.
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Development of the two-component mixture

If we look only at the first term in the condition, we have that it is equivalent to

E0

[
f1(yi |θ01)− f2(yi |θ02)

f (yi |θ0, π(θ0))

]
E0

[
f ′1 (yi |θ1)f2(yi |θ02)− f1(yi |θ01)f ′2 (yi |θ2)

(f1(yi |θ01) + f2(yi |θ02))2

] ∣∣∣∣
θ=θ0

,

while the second term is equivalent to

E0

[
f1(yi |θ01)

f1(yi |θ01) + f2(yi |θ02)

]
E0

[
f ′1 (yi |θ1)− f ′2 (yi |θ2)

f (yi |θ0, π(θ0))

] ∣∣∣∣
θ=θ0

.

Hence, the condition becomes

E0

[
f1(yi |θ01)− f2(yi |θ02)

f (yi |θ0, π(θ0))

]
E0

[
f ′1 (yi |θ1)f2(yi |θ02)− f1(yi |θ01)f ′2 (yi |θ2)

(f1(yi |θ01) + f2(yi |θ02))2

] ∣∣∣∣
θ=θ0

+

E0

[
f ′1 (yi |θ1)− f ′2 (yi |θ2)

f (yi |θ0, π(θ0))

] ∣∣∣∣
θ=θ0

E0

[
f1(yi |θ01)

f1(yi |θ01) + f2(yi |θ02)

]
+

E0

[
f ′2 (yi |θ2)

f (yi |θ0, π(θ0))

] ∣∣∣∣
θ=θ0

= 0

If π(θ0) ̸= π0, the last two terms will not be equal to zero unless the two densities f1(·) and

f2(·) are equal or infinitely distant to each other. Back to MLE
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Example of a circular argument

Using the definition of π(θ) from equation (6) and the WLLN, we have that

πg (θ
0) =

1

NT

N∑
i=1

T∑
t=1

πg (θ
0)fg (yit |xit ; θ0g )∑G

l=1 πl(θ0)fl(yit |xit ; θ0l )
p−→ E

[
πg (θ

0)fg (yit |xit ; θ0g )∑G
l=1 πl(θ0)fl(yit |xit ; θ0l )

]
,

as N and T tend to infinity.

If it is true that

E

[
πg (θ

0)fg (yit |xit ; θ0g )∑G
l=1 πl(θ0)fl(yit |xit ; θ0l )

]
= π0

g ,

for all g ∈ G, then we do get that π(θ0)
p−→ π0 for all g ∈ G.

The above equation is equivalent to∫
Y

π0
g (θ

0)fg (yit |xit ; θ0g )∑G
l=1 πl(θ0)fl(yit |xit ; θ0l )

G∑
l=1

π0
l fl(yit |xit ; θ0l )υ(dyit) = π0

g ,

which will be true if πg (θ
0) = π0

g for all g ∈ G. This leads to a circular
reasoning that does not prove anything. Back to MLE
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Proof of convergence of π(θ0) to π0

Let’s impose that fg (yit |xit ; θ0g ) = 0 for any g ̸= z0it and for all values of

(yit , xit) ∈ Y|X g , where ∩G
g=1Yg = ∅.

In this case, we can write that

E

[
πg (θ

0)fg (yit |xit ; θ0g )
f (yit |xit ; θ0, π(θ0))

]
=

∫
Y

πg (θ
0)fg (yit |xit ; θ0g )

f (yit |xit ; θ0, π(θ0))
f (yit |xit ; θ0, π0)υ(dyit),

=

∫
Yg

πg (θ
0)fg (yit |xit ; θ0g )

πz0it
(θ0)fz0it (yit |xit ; θ

0
z0it
)
π0
z0it
fz0it (yit |xit ; θ

0
z0it
)υ(dyit),

=

∫
Yg

π0
z0it
fz0it (yit |xit ; θ

0
z0it
)υ(dyit) = π0

z0it
,

where the second equality comes from the fact that fg (yit |xit ; θ0g ) = 0 for any

g ̸= z0it .

Therefore, π0
g

p−→ π0
g will be true if fg (yit |xit ; θ0g ) = 0 for any g ̸= z0it , which

will happen if and only if all component’s densities are infinitely distant from
each other under Assumption 1. Back to MLE
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Proof of Theorem 3.2

Let’s define the categorical assignment variable, zit(θ
0, p), as follows :

zit(θ
0, p) ≡ zit(θ

0, θ̌0, p) := argmax
g∈G

fg (yit |xit ; θ0)
fz0it (yit |xit ; θ

0)

p∏
j=1

fg (xitj |θ̌0)
fz0it (xitj |θ̌

0)
,

then we have that

lim
p→∞

fl(yit |xit ; θ0)
fz0it (yit |xit ; θ

0)

p∏
j=1

fl(xitj |θ̌0)
fz0it (xitj |θ̌

0)
= lim

p→∞

fl(yit |xit ; θ0)
fz0it (yit |xit ; θ

0)

∏
j :χitj (θ̌0 )̸=l

fl(xitj |θ̌0)
fz0it (xitj |θ̌

0)
×

∏
j :χitj (θ̌0)=l

fl(xitj |θ̌0)
fz0it (xitj |θ̌

0)
,

lim
p→∞

fl(yit |xit ; θ0)
fz0it (yit |xit ; θ

0)

p∏
j=1

fl(xitj |θ̌0)
fz0it (xitj |θ̌

0)
< 1,

for any l ∈ G\z0it and all (i , t) pairs as a direct consequence of Assumption 2.

This leads to zitg (θ
0, p)

a.s.−−→ z0itg for all (i , t) pairs and all g ∈ G as p tends to

infinity, thus implying zitg (θ
0, p)

p−→ z0itg for all (i , t) pairs and all g ∈ G as p

tends to infinity. Back to Theorem 3.2
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