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@ (Unobserved) heterogeneity is practically everywhere in social sciences.
o Let's assume that all datasets are incomplete up to some point.
o Can lead to severe omitted-variable bias if the missing information is correlated
with the observed information.
o Perfect randomization is often impractical and expected values (3, ATE,
ATET, etc.) of coefficients "mask” the heterogeneity in the distributions.

@ One can try to solve the problem by grouping/clustering homogeneous units
altogether.

e Homogeneity is conditional on both observed and unobserved information.

e This helps to recover meaningful estimates and/or to get a sense of the
distribution of the coefficient(s) of interest.

e What should we do when the true grouping pattern (e.g. the cohort in
heterogeneous DID) is unobserved?

o People do change! In panel data analysis, the true grouping pattern might
change over time.
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Motivation - The Frailty example

@ Frailty is defined as

a state of —
vulnerability in ! C
elders.
Q H T
@ Individuals who
MANAGING
share the same t ﬂ WELL
frailty level will also —
react similarly to ” ™
health adverse FRAILTY
events and new
diagnoses. £ e
MILD
FRAILTY
@ Frailty is usually
unobserved in both

clinical and
administrative
health data.
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CLINICAL FRAILTY SCALE

People who are robust, active, energetic
and motivated. They tend to exercise
regularly and are among the fittest for
their age.

People who have no active disease
symptoms but are less it than category
1. Often, they exercise or are very active
occasionally, e.g, seasonally

People whose medical problems are
well controlled, even if occasionally
symptomatic, but often are not
regularly active beyond routine walking.

Previously “vulnerable? this category
marks early transition from complete
independence. While not dependent on
others for daily help, often symptoms
limit activities. A common complaint

is being “slowed up* and/or being tired
during the day.

People who often have more evident
slowing, and need help with high

order instrumental activities of daily
living (finances, transportation, heavy
housework). Typically, mild frailty
progressively impairs shopping and
walking outside alone, meal preparation,
medications and begins to restrict light
housework.

LIVING  People who need help with all outside
WITH  activities and with keeping house.
Inside, they often have problems with
.opmg stairs and need help with bathing and
might need minimal assistance (cuing,
standby) with dressing.

LIVING  Completely dependent for personal
WITH  care, from whatever cause (physical or
SEVERE  cognitive). Even so, they seem stable
FRAITY  @nd not at high rsk of dying (within ~6
months).

Completely dependent for personal care

LIVING

H WITHVERY  and approaching end of life. Typically,

SEVERE  they could not recover even from a
FRAILTY  Minor iliness.

TERMINALLY ~ Approaching the end of life. This
1L category applies to people with a life
expectancy <6 months, who are not
otherwise living with severe frailty.
(Many terminally ill people can still
exercise until very close to death.)

SCORING FRAILTY IN PEOPLE WITH DEMENTIA

recent memory is
very impaired, even though they semingly
can remember their past fe events well.

The degree of railty g
corresponds to the degree of
dementia. Common symptoms in

getting
the details of a recent event, though
sill emembering the event itself,
repeating the same question/story
and social withdrawal

nsevere dementia, they cannot do
personal care without help.

In very severe dementia they are often
bedfast, Many arevirtually mute.

Clinical FrailtyScale €2005-2020 Rockowoad,
Version 2.0 (EN).All rights eserved. For permission
v geriatricmedicinerssearch.ca
Rockwood K etal. A globalclnical measure offitnes
and fraity i lderly people. CMAJ 2005:173:489-495,

@ DALHOUSIE
UNIVERSITY

Figure 1: Clinical Frailty Scale (CFS) from Dalhousie University [Rockwood and
Mitnitski, 2007]. The scale goes from 1 (Very fit) to 9 (Terminally ill).
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@ Finite mixtures and latent class analysis have been extensively used to account
for such unobserved heterogeneity in applied work. But not without major
issues.

e The objective function is usually multimodal, so you need to try multiple initial
parameter values even in the simplest cases (abstract from that for now).

o Estimates can be very imprecise and unstable.

o Contrary to the common belief, | show that consistency of MLE of finite
mixtures is never guaranteed in practice.

@ | show how we can get consistent estimates of all parameters in the mixture
by maximizing a different objective function than the objective used in both
the fmm and gsem commands.

@ There is no Stata command yet, but it would be easy to add an additional
subcommand to the cluster command to integrate such a consistent
estimation procedure.
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General framework

@ Let's define the following mixture density :

G G
f(Yit|Xit3 977) = Zﬂgfg()/it‘xity = Zﬂg y,t\x,t, ) (1)
g=1

g=1

i={1,.,N},t={1,..,T}

Yit is a univariate outcome (discrete or continuous),

Xit is a p-sized vector of strictly exogenous covariates,

fz(:]-;84) is the density of the g component in the mixture,

there is G < oo € NT groups of observations, where G is known, but the true
group membership is unknown,

7w = (m1,...,m¢) € M is a vector of mixing weights to estimate, with 7, € (0,1)
for each g € {1, ..., G} = G, and with chzl g =1,

0 = (61,...,06) € © C RP*C contains all the parameters for each f,(-).

@ The mixture log likelihood function is defined as follows :

N T G
L0, m) == ZZ'Og(Z g fg (it Xit; 0g)) (2)

i=1 t=1 g=1
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General framework

o For each dataset (x,y) € RNT*(P+1) | there exists a set of true parameters,
denoted by (6°,7°), such that

G
f(yit|Xit;90a7TO) = Zﬂ'gfg()’iﬂxit;eg)- (3)
g=1

@ Let's define the true grouping variable as follows

o . )1 ifand only if y; is generated by fg(-|xi; 63), A
2 e _ 4)
0 otherwise.
@ The gt true mixing weight, 72, is such that
N T 0
it P
By T ®

as N and T both tend to infinity.
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Literature review

@ This general setup is very flexible and has been namely used in :

o Health economics to recover unobserved types of patients [Deb and Trivedi,
1997, 2002, Conway and Deb, 2005] and model the tail distribution of
healthcare expenditures [Jones et al., 2015, 2016, Kasteridis et al., 2022];

e Labour economics to model duration of unemployment spells and career
decisions of young men [Heckman and Singer, 1984, Keane and Wolpin, 1997];

o Econometric theory where the mixture density is estimated non-parametrically
[Kasahara and Shimotsu, 2009, Compiani and Kitamura, 2016];

e The March 2023 issue of the Stata journal [Jenkins and Rios-Avila, 2023].

@ In the parametric case, the maximization of L(6, 7) with respect to 6 and 7 is
(almost) always carried out by the expectation-maximization (EM) algorithm
[Dempster et al., 1977].

@ Any algorithm that can globally maximize L(0, ) with respect to 6 and 7 is
assumed to yield consistent estimates due to the strong consistency property
of maximum lilkelihood estimation (MLE) [Wald, 1949, Redner and Walker,
1984, Chen, 2017].
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Contributions to the literature

@ "Perhaps the most troublesome implication of [the obtained results] is that, if
the component densities are poorly separated, then impractically large sample
sizes might be required in order to expect even moderately precise
maximum-likelihood estimates.” Redner and Walker [1984].

@ | show that globally maximizing the mixture log likelihood function as shown
in (2) does not yield consistent estimates under mild regularity conditions.

@ | show that maximizing the max-component log likelihood function will lead
to consistent estimators of all parameters in the mixture (including the mixing
weights) under certain assumptions.

o The K-means and the classification EM (CEM) algorithms both maximize this
objective function.

e K-means and CEM vyield consistent estimates if group membership is assumed
to be constant over time for all units [Bonhomme and Manresa, 2015].

e Some authors have tried to relax this assumption, but never completely
[Lumsdaine et al., 2023, Okui and Wang, 2021].

o It is possible to get consistent estimates with unrestricted group membership
(as claimed in the classical setup) if the G joint densities of the covariates and
the outcome are asymptotically non-overlapping.
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Regularity conditions

@ (Generic identifiability) f(y|x; 0, 7) = f(y|x;0’,7') < 0 = 0" and w = =’ for
any dataset (x,y) € RVT*(P+1) yp to any "label switching”, and assuming
that G is known (see Section 1.3 of Friihwirth-Schnatter [2006]).

@ (Boundedness) Eq[log f(yit|xit; 6, 7)] < oo for any § € © and any 7 € .

@ (Common support) fz(yit|xit; 0g) > 0 for all g € G and all 8, € ©, where all
components’ densities share the same support.

@ (Continuous differentiability) fz(yit|xit; 0g) is continuously differentiable with
respect to 0, for all g € G.

Approximate MLE of 7

@ The "approximate” MLE of g, denoted by 7z(8), is defined as follows

N T N T .
ﬂ-g(o) = % ZZTitg(G,ﬂ') = % ZZ Zg@(YIt|XIt’ Qg) (6)

b
=1 t=1 o3 Do mifi(YielXies 01)

where chzl mg(0) =1 by construction [Redner and Walker, 1984].

= =

(.
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(In)consistency of MLE

@ Under continuous differentiability of the objective function with respect to 6,
consistent estimation of  requires that

Bols(0)]u = o | 228 Vi)

:07

0=06°

where [Eq is the expected value with respect to the true mixture density.

@ This is equivalent to

/ f(yit‘xit; HO’FO) 8f(yit|xit; 9, 77(9))
f'
Y

(vit|xit; 69, w(69)) 6 =0.

0=0°

U(d)/it)

o If 7(#°) £ 70, then the above condition reduces to

Of (Vie|xie; 0, m°
/ (yt| t )U(d)/it)
N

00 =0

0=6°

which is always true if the limits of the integral is not a function of 6.
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(In)consistency of MLE

o If 7(6°) does not converge to 7°, then MLE is inconsistent by construction for
the mixing weights.

o If we don't care about 7?, we still need to show that

f (vielxie 60, 7°) _ Of (yielxiei 6, w(6))
v(dyir) = 0.
/y f(yie xie; 69, w(6°)) 90 oo (dyir)

holds independently of the value to which 7(6°) will converge. This is not
easy to show and will not hold in most cases.

e It is important to note that convergence of 7(#°) to 7° is not automatic (if
we don't want to rely on any kind of circular argument).

o Therefore, we have to find a way to guarantee that w(6°) £ 70 as
N, T — oo. The problem is similar to the incidental parameter problem in
non-linear fixed effects models.
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(In)consistency of MLE

@ Let’s recall that

Z

N T
ZZ ,\;tg LN E[Zg], = ﬂ'g.

i=1 t=1

@ Therefore, if

7Tg(0) (ylt|Xltv g) :Zp
S w0 il 09)

for all values of (yi, xit) € Y|X and all g € G, then we will have that
7(0°) & 70 as N and T tend to infinity.

Tieg (67, m(6°)) =

@ This will happen if and only if all component’s densities are infinitely distant
to each other (i.e. fz(yit|xit; 03) = 0 for any g # z3 and for all values of

(vit,xit) € V|X ., where mgzly\xg =0).

@ It is very easy to see it graphically.
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(In)consistency of MLE

F(x]6%)
oy i i I

ni Ha

(a) True mean values: p° = (—0.5,0.5)

f(x6%)

HENEY

(b) True mean values: u° = (—0.65,0.65) (c) True mean values: p® = (—0.35,0.35)

Figure 1: Various mixtures of two normal densities with equal mixing weights and equal variances. The
upper graph in each panel shows the two normal densities when they are identified separately, whereas
the lower graph of each panel shows the observed mixture density (lower graphs are rescaled to improve
comparability). The estimates provided by MLE in each case are represented by pf and pj, whereas the

true mean values are represented by y? and ;LS.
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(In)efficiency of MLE

@ It is never sure that maximizing the standard mixture log likelihood will
converge to the true parameter values unless 7(6°) = 7°.

o If the estimation procedure acts like if the true group membership were known
for all observations, then this procedure would share the so-called oracle
property and would be asymptotically efficient [Su et al., 2016].

@ The EM algorithm can never share this property since the assignment of each
observation to each group/component is probabilistic (7j (6, 7) > 0).

@ | show how the K-means and the CEM algorithms can share the oracle
property without restricting group membership over time.
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The standard CEM algorithm

@ The "standard” CEM algorithm maximizes the max-component log likelihood

function :
T G
LMC(Q) = Z Z Zzltg |Og }/:t\Xm ) (7)
i=1 t=1 g=1
where
1 if g = argmax fi(yit, xit|0)),
Zjg (0) = G (i xie|61) (8)
0 otherwise.

e Compare this to the standard mixture log likelihood (eq.(2)) :

:— ZZIog Zﬂ-g g )/It‘xlt' g))

i=1 t=1

@ The mixing weights become a by-product of the estimation procedure :

N T
TEO) = 1 D 2usl0) B Eleg(6)] ©)

i=1 t=1
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The consistent CEM algorithm

@ The standard CEM algorithm is known to be inconsistent, as the K-means
[Bryant and Williamson, 1978, Bryant, 1991, Celeux and Govaert, 1992].

@ To make the algorithm consistent, let's use

1 if g =argmax f; ,-,x,-9,9v
20s(6.5.p) = g gma 1(Yies Xie |01, 01) (10)
g )
0 otherwise,
instead of zjz(6), where
v p v
fi(yie, xie|01, 01) := fi(yie|Xie; 6)) H fi(xig0)), (11)

Jj=1

and where f/(x,tj|9/J) is the /* component’s density of the j* covariate in the
vector x;;, with § = (91, . 9(;) and 0, = (0,1,.. Glp) .

@ The algorithm then alternates between an expectation/assignment step
(E-step) and a conditional maximization step (M-step), just as does the EM
algorithm.
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The consistent CEM algorithm

@ The jth element in x;;, denoted by Xy, is distributed according to some true
density fz(xiij|03) = fg(xi;|6°) if and only if z), = 1. Let’s also define the
following ratio for xj; :

%0 f (Xlt |é0)
i 9 — g 5
Xig(07) == argrgngéif YOS

where z) = g if and only if z}, = 1. Then we assume that

f0 (yie| xie: 6° f0 (xix; |6° £ (010
P | lim M 11 f"(tf!g) S % _1,
—00 | xp . —
P I\ Yit| Xits (8921 /(leJ| ) Fxin(00)=1 Z,-Of(X’tJ| )

forany / € G\, and all values of i € {1,..., N} and all t € {1, ..., T}.

e plimy 7, n = oo for all g € G, where nJ Z 121& 1 ,tg
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The consistent CEM algorithm

Let Assumptions 1 and 2 hold. Let's also define z, (6,6, p) as in eq.(10). Then
Zieg (00,80, p) 2> zj}, for all values of (i,t) € Y|X and all g € G as p tends to
infinity.

@ Under Assumption 2, all observations in the sample will be correctly classified
at the true parameter values if the number of covariates is sufficiently large.

@ Standard asymptotics and inference from MLE will be applicable
component-wise if Assumption 2 hold as N, T — oo and if there is no
"cross-group” dependence.

@ The rate at which N, T, and p tend to infinity can remain undetermined, as
long as the classification error rate goes to zero in the limit when evaluated at
the true parameter values [Dzemski and Okui, 2021].

@ The second part of Assumption 2 says that the number of groups, G, cannot
grow faster than the number of observations within each group.

Raphaél Langevin Consistent Estimation of Finite Mixtures



Monte Carlo simulations

@ Two simulation exercises were performed.
o The first one shows that MLE of finite mixtures leads to inconsistent estimates.
e The second one compares the finite-sample performance of the EM algorithm
and the consistent CEM algorithm.

@ The first data-generating process (DGP) is described by :
Vi = H + €,
where p® = (1, ..., u%) refers to the vector of true mean value and where z°
is the true i*" group membership, with ¢; ~ N(0, 1).

@ The second DGP is described by :
_ T _T
Yit = Xit Bzg + X V29 + 6tzg + Q0 + €j,
Xigj = Mo + Vie,

where §; and «; are time-fixed and unit-random effects, respectively. All
parameters vary across groups, except for €; ~ N(0,1) and v;; ~ N(0,1). The
true categorical group membership z2 follows an AR(1) process.
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Results - First DGP, G° =2, 7 = (0.5,0.5)

Algorithm n b 7o ji1 Jio &1 Fo
(1) () (3) (4) (5) (6) (7) (8)
(-0.125, 0.125) 0.00115 0.99885 -0.19774 0.00027 1.10658 1.00789
(-0.25, 0.25) 0.97877 0.02123 -0.01772 0.81930 1.02642 0.90533
EM (-0.5, 0.5) 0.60267 0.39733 -0.39864 0.60477 1.01862 0.98370
(-1, 1) 0.49848 0.50152 -1.00223 0.99623 1.00036 1.00262
(-2, 2) 0.50007 0.49993 -1.99996 2.00065 1.00071 1.00056
(-0.125, 0.125) 0.50002 0.49998 -0.80421 0.80437 0.60777 0.60754
(-0.25, 0.25) 0.49973 0.50027 -0.82321 0.82241 0.62135 0.62142
CEM (-0.5, 0.5) 0.50057 0.49943 -0.89461 0.89674 0.67019 0.66946
(-1, 1) 0.49902  0.50098 -1.16912 1.16463 0.79896 0.80082
(-2, 2) 0.49990 0.50010 -2.01769 2.01695 0.96537 0.96637

Table 1 : Estimated values for each scenario of true mean values with G° = 2, 7°

standard errors, and N = 1,000, 000. [LO = true mean values; # = estimated mixing weights; i = estimated

(0.5,0.5), equal unit

mean values; & = estimated standard errors; CEM stands for the standard CEM algorithm.

@ The results confirm the insights given by Figure 2. All biases decrease as the
distance between the mean values increases.
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Results - First DGP, G° =2, 7 = (0.5,0.5)

Algorithm n b 7o ji1 Jio &1 Fo

(1) (2) (3) (4 (5) (6) (7) (8)
(-0.125, 0.125)  0.00115 099885 [-0.19774 0.00027| 1.10658 1.00789
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Table 1 : Estimated values for each scenario of true mean values with G° = 2, 7° = (0.5, 0.5), equal unit
standard errors, and N = 1,000, 000. [LO = true mean values; # = estimated mixing weights; i = estimated
mean values; & = estimated standard errors; CEM stands for the standard CEM algorithm.

@ The results confirm the insights given by Figure 2. All biases decrease as the
distance between the mean values increases.
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Results - First DGP, G° =2, 7 = (0.5,0.5)

Algorithm n b 7o ji1 Jio &1 Fo
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Results - First DGP,

u? E(0°) N L(ji) — L(p°) RMSE, LMC(i) - LYu") RMSE,

(%) EM CEM

(1) (2) (3) (4) (5) (6) (7)
3,000 3.657 2.52930 2684.8  0.76083

15,000 1.828  2.51083 13065.7 0.71051

(-0.25, 30,000 0.880 2.01044 26111.1 0.72044
0, 0.25) 75,000 -0.336  1.50215 65795.0 0.70565
300,000 T1.053  1.42663 262800.7 0.71203

1,500,000 0.389 1.08786 1314054.2  0.70950

3,000 20214 1.02572 2563.2  0.59841

15,000 2.556  0.10369 12437.3  0.57450

(-0.5, o 30,000 1.006  0.22664 24647.7 0.57466
0, 0.5) 535 75,000 0.504 0.24050 62337.4  0.57338
300,000 1.496 0.15410 248502.9 0.56899

1,500,000 1.828  0.39178 1243552.0  0.56016

Table 2 : Root mean square errors (RMSEs) of the estimated mean values and differences in log likelihood with
G® = 3, 7% = (0.167,0.33, 0.5), equal unit standard errors, and N = 1,500, 000. E(6°) = error classification
rate at the true parameter values, L(f2) — L(u®) = distance between the log likelihood value evaluated at the

estimated mean values and the log likelihood value evaluated at the true mean values; CEM stands for the
standard CEM algorithm.
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Results - First DGP, G° = 3, 7% = (

Algorithm I Fisl s T3 fiq 2 fi3 ay a9 b3
(1) (2) (3) (4 (5) (6) (7) (8) (9) (10) (11)
(-0.25, 0, 0.25) |0.00025 0.99974 0.00000 -2.09923 0.08381 0.60173 0.45722 1.01764 3.42487
(-0.5, 0, 0.5) 0.26489 0.73511 0.00001 -0.40353 0.37203 1.05926 1.00303 1.01502 2.70881

o

EM (-1, 0, 1) 0.00484 0.46835 0.52681 -1.94502 -0.33621 0.94938 0.68833 1.11344 1.01268
(-2, 0, 2) 0.17078 0.32996 049926 -1.97632 0.01442 2.00168 1.00944 0.99699 1.00143
(-4, 0, 4) 0.16660 0.33350 0.49989 -4.00138 -0.00040 4.00096 1.00137 1.00095 1.00137

Table 3 : Estimated values for each scenario of true mean values with G° = 3, 7% = (0.167,0.33,0.5), equal
unit standard errors, and N = 1, 500, 000. [LO = true mean values; # = estimated mixing weights; [t =
estimated mean values; & = estimated standard errors.

@ The results show that convergence to the true values is not necessarily
happening when searching for the values that maximizes the standard mixture
likelihood. The conclusion is similar when maximizing the standard
max-component log likelihood function.
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Results - Second DGP, G° =3, 0.25 < 7Y < 0.4

Wisclassification rate atthe true values = 0.0, mean coefficients Wisclassification rate atthe true valuss = 0.0, variance

Weighted RM SE

0.4+
024 ‘\"/_/_’A
0.21
014
250 500 750 1000 250 500 750 1000
Number of units, N
Algorithm: CEM algorittm —&— EM algarithm

Figure 3: Weighted RMSEs as a function of N when G° = 3, the classification error rate at the true parameter

values is equal to zero, and when looking at the highest log likelihood value only among all sets of initial values;

The true mixing weights vary between 0.25 and 0.4 for each component and for each value of N; CEM stands
for the consistent CEM algorithm.

@ The consistent CEM algorithm correctly classifies all observations for all
values of N in this setup, but not the EM algorithm.
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Results - Second DGP, G° =3, 0.25 < 7Y < 0.4
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Figure 4: Average weighted RMSEs as a function of N when G = 3, the classification error rate at the true
parameter values is equal to zero, and when looking at the weighted RMSE averaged over all sets of initial
values; The true mixing weights vary between 0.25 and 0.4 for each component and for each value of N; CEM
stands for the consistent CEM algorithm.

@ The consistent CEM algorithm vyields results that are much less sensitive to
the choice of initial parameter values than the EM algorithm in this setup.

Raphaél Langevin Consistent Estimation of Finite Mixtures



Simulation results, G

E;\-T(ﬁ']j N Algorithm E,'\,’T(é*) RMSE,, RMSE,, Average Average
(%) (%) & &2 RMSE,. € RMSE,, 62
(1) (2 @ (4) (5) (6) (7) (8)
100 EM 6.60 0.5156 0.7241 2.3091 9.3371
CEM 0.00 0.1956 0.5348 0.2441 1.2619
300 EM 8.20 0.2391 0.5129 1.8244 5.3499
0.0 CEM 0.00 0.2456 0.3210 0.2578 0.5261
500 EM 6.48 0.1884 0.3715 1.7515 6.4694
CEM 0.00 0.1123 0.2026 0.1300 0.3643
1000 EM 6.60 0.2028 0.3122 1.5842 6.7064
CEM 0.00 0.0848 0.1371 0.1021 0.4103
EM 28.80 1.6232 0.9484 1.9916 1.4811
100 CEM 5.60 0.1667 0.5840 0.7967 2.3871
200 EM 30.33 1.4384 0.9696 1.7024 1.1605
CEM 4.93 0.1757 0.3483 0.5302 1.5488
[4.1,4.6] . - — = .
500 EM 29.88 1.8206 1.0551 1.6749 1.1976
CEM 4.80 0.1224 0.2467 0.4510 1.2071
1000 EM 30.28 0.5142 1.0401 1.7240 1.1915
CEM 4.78 0.0976 0.1811 0.4435 1.3069

Table 4: Simulation results when G° = 3, T = 5, and when the model is correctly specified; En7(0) =
Classification error rate evaluated at ; RMSE,, = Weighted root mean square error;
7° = (0.422,0.276, 0.302) for N = 100, 7° = (0.453, 0.267,0.280) for N = 300, 7° = (0.442,0.267, 0.291)
for N = 500, and 7° = (0.439,0.273,0.288) for N = 1000; 6*, £", and 6>* correspond respectively to the
whole set of estimated parameter values, the mean coefficient estimates, and the variance estimates that are
associated with the highest log likelihood value. CEM stands for the consistent CEM algorithm.
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Simulation results, G

EnT (9” ) N Algorithm Exnr(6* ) RMSE, RMSE,, Average Average
(%) (%) ¢ &2 RMSE,. ¢ RMSE,, 6°
(1) (2 @ (4) (5) (6) (7) (8)
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CEM 0.00 0.1956 0.5348 0.2441 1.2619
300 EM 8.20 0.2391 0.5129 1.8244 5.3499
0.0 CEM 0.00 0.2456 0.3210 0.2578 0.5261
500 EM 6.48 0.1884 0.3715 1.7515 6.4694
CEM 0.00 0.1123 0.2026 0.1300 0.3643
1000 EM 6.60 0.2028 0.3122 1.5842 6.7064
CEM 0.00 0.0848 0.1371 0.1021 0.4103
EM 28.80 1.6232 0.9484 1.9916 1.4811
100 CEM 5.60 0.1667 0.5840 0.7967 2.3871
200 EM 30.33 1.4384 0.9696 1.7024 1.1605
CEM 4.93 0.1757 0.3483 0.5302 5488
[4.1,4.6] - . - i
500 EM 29.88 1.8206 1.0551 1.6749 1.1976
CEM 4.80 0.1224 0.2467 0.4510 1.2071
1000 EM 30.28 0.5142 1.0401 1.7240 1.1915
CEM 4.78 0.0976 0.1811 0.4435 1.3069

Table 4: Simulation results when G° = 3, T = 5, and when the model is correctly specified; En7(0) =
Classification error rate evaluated at ; RMSE,, = Weighted root mean square error;
7° = (0.422,0.276, 0.302) for N = 100, 7° = (0.453, 0.267,0.280) for N = 300, 7° = (0.442,0.267, 0.291)
for N = 500, and 7° = (0.439,0.273,0.288) for N = 1000; 6*, £", and 6>* correspond respectively to the
whole set of estimated parameter values, the mean coefficient estimates, and the variance estimates that are
associated with the highest log likelihood value. CEM stands for the consistent CEM algorithm.
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Table 4: Simulation results when G° = 3, T = 5, and when the model is correctly specified; En7(0) =
Classification error rate evaluated at ; RMSE,, = Weighted root mean square error;
7° = (0.422,0.276, 0.302) for N = 100, 7° = (0.453, 0.267,0.280) for N = 300, 7° = (0.442,0.267, 0.291)
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whole set of estimated parameter values, the mean coefficient estimates, and the variance estimates that are
associated with the highest log likelihood value. CEM stands for the consistent CEM algorithm.
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Simulation results, G°

En1(6°) G Algorithm EJ\:T(@") RMSE,, RMSE,, Average Average
(%) (%) & g RMSE,, & RMSE,, 6°
(1) (2) (3) (4) (5) (6) () (8)
N EM 12.76 1.3986 55.1772 1.8632 58.7199
CEM 8.92 1.1394 52.4770 1.1406 52.4023
0.0 3 EM 4.44 0.7944 0.4050 1.4405 32.9976
CEM 0.24 1.0632 0.3133 0.8677 12,0512
4 EM 12.64 0.7851 0.4139 1.3928 16.9940
CEM 53.48 0.4510 0.4734 1.0465 3.9966
5 EM 18.88 0.1477 4.0783 0.4165 4.4970
CEM 9.12 0.2316 4.7860 0.2949 4.7717
a4 3 EM 20.28 0.3773 1.7291 0.6324 3.4111
CEM 6.40 0.1867 0.4277 0.4889 2.3301
4 EM 20.72 0.6745 4.2007 0.7649 2.6814
CEM 54.60 0.7046 2.3045 0.7153 1.6646

Table 5: Simulation results when G° = 3, N = 500, T = 5, and when the model is both correctly and
incorrectly specified in terms of G; 7° = (0.089, 0.535, 0.376) for all scenarios; En7(#) = Classification error
rate evaluated at 6; RMSE,, = Weighted root mean square error; o*, é*, and 62 correspond respectively to
the whole set of estimated parameter values, the mean coefficient estimates, and the variance estimates that

are associated with the highest log likelihood value. CEM stands for the consistent CEM algorithm.
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Simulation results, G°
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Table 5: Simulation results when G° = 3, N = 500, T = 5, and when the model is both correctly and
incorrectly specified in terms of G; 7° = (0.089, 0.535, 0.376) for all scenarios; En7(#) = Classification error
rate evaluated at 6; RMSE,, = Weighted root mean square error; o*, é*, and 6% correspond respectively to
the whole set of estimated parameter values, the mean coefficient estimates, and the variance estimates that

are associated with the highest log likelihood value. CEM stands for the consistent CEM algorithm.
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Simulation results, G°
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Table 5: Simulation results when G° = 3, N = 500, T = 5, and when the model is both correctly and
incorrectly specified in terms of G; 7° = (0.089, 0.535, 0.376) for all scenarios; En7(#) = Classification error
rate evaluated at 6; RMSE,, = Weighted root mean square error; o*, é*, and 6% correspond respectively to
the whole set of estimated parameter values, the mean coefficient estimates, and the variance estimates that

are associated with the highest log likelihood value. CEM stands for the consistent CEM algorithm.

Raphaél Langevin Consistent Estimation of Finite Mixtures



Empirical application

@ The goal is to model the healthcare expenditure (HCE) of a cohort of
non-institutionalized elders using administrative data from the province of
Québec, Canada.

o | use a finite mixture of two-part models.

e N=1,330, T =7, and all periods are three-months long.

e The covariates include a comorbidity indicator, a elder’s risk indicator (i.e. a
poor proxy of frailty), continuity of care, and gender.

@ The density of the outcome conditional on the covariates and 6 is defined

generally as a two-part process by :
it

Fo(yiclzie; 0) = Plyi = 0]z 99](1_dit) Plyic > 0|20 0] fo(yielyir > 0,2:;6) o,

where X}; is the vector of covariates used in the binary part, and where dj; is
equal to 1 if y;; > 0 and zero otherwise.

o The binary part is a Probit model while the continuous part is log-normal, both
using a Mundlak specification (as in the second simulation exercise).

@ Selection of the initial parameter values and the number of groups is
performed using BIC and cross-validation.
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Results - Empirical applicatio

G Algorithm  Goodness-of- BIC ranking among initial values (1=lowest)
fit measure (4)
(1) (2) (3) 1 2 3 1 5
1 BIC 14.6194 - - - -
) RMSEcy 20530 - - . -
EM BIC 12,5896 12,5899 12,5944 12.5997 12.6014
9 RMSEqy 1.6833 1.6512 2.2448 1.6489 2.9498
CEM BIC 12.6934 12.6965 12.6969 12.6988 12.7039
o RMSEqy 1.6475 2.7029 1.3670 1.6711 L6606
EM BIC 10.6818 10.6869 10.6935 10.6993 10.7012
3 RMSEqy 1.4512 1.3019 1.3655 NA 1.4610
CEM BIC 11.5007 11.5017 11.5179 11.5183 11.5187
o RMSEcy 1.8012 21767 1.5641 2.0958 NA
EM BIC 9.6097 9.7520 9.8066 9.8331 9.8414
4 RMSEcy 1.5777 1.2062 3.3790 1.6355 1.2521
CEM BIC 9.5445 9.5485 9.5486 9.5908 9.6484
o RMSEqy, 1.1832* 1.8243 2.3783 23110 2.3756
EM BIC 8.7560% 9.0540 9.2138 9.3315 9.3605
5 RMSEqy 2.7742 4.2452 3.5080 1.2022* 1.3531
CEM BIC 9.0361* 9.1735 9.3390 9.3458 9.3693
o RMSE, 12165  NA NA NA NA

Table 6 : BIC values and root mean squared errors obtained by grouped 10-fold cross-validation for each one of
the five smallest BIC values obtained by random initialization; BIC = Bayesian information criterion, RMSEcy
= Cross-validated root mean squared error (on the log outcome).
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Table 6 : BIC values and root mean squared errors obtained by grouped 10-fold cross-validation for each one of
the five smallest BIC values obtained by random initialization; BIC = Bayesian information criterion, RMSEcy
= Cross-validated root mean squared error (on the log outcome).
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Results per group

Group Estimated Moment  Male ERA Time- COCI Time- Time-
number  mixing averaged averaged averaged
weights ERA COCI Charlson

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Mean 0.3770 2.0534 2.0534 3.1861 3.9952 1.3493

Global 1.000 o . . o . )

Variance  0.2349 2.9624 2.6056 9.8073 4.3050 1.3419

1 0.1438 Mean 0.3737 1.8345 1.8006 10.0000 5.8652 1.1747

Variance  (.2342 2.4974 2.1076 0.0000 2.9505 1.0185

2 0.2883 Mean 0.4085 3.8076 3.6534 2.1609 3.0130 2.1931

Variance  0.2417 2.4567 21792 2.2577 2.2839 2.1028

3 0.3340 Mean 0.3488 1.1287 1.2804 2.7342 3.8148 1.0170

Variance  0.2272 0.6422 0.8164 2.9500 2.9308 0.4885

4 0.2338 Mean 0.3918 1.4066 1.4009 0.9982 4.4319 0.9307

Variance  0.2384 1.6886 1.4736 0.0001 5.6768 0.5798

Table 7 : Descriptive statistics of the observations contained within each group created by the preferred
specification when using the CEM algorithm.
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Results - Empirical application

Fixed effect estimates

Group 1, binary part

Group 1, continuous part
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Group 1, continuous part
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Figure 5: Estimates of the time-fixed effects from the preferred specification with the CEM (left graphs) and

the EM (right graphs) algorithms for each group and each part of the model; The shaded areas correspond to
the cluster(unit)-robust 95% confidence interval and do not account for uncertainty in group membership.
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Results - Empirical application

Coefficients

Group/Component

1 2 3 4
Binary part
0.1425 -1.8204%F  -1.6829%** 0.4866
Time-varying ERA
(0.1124)  (0.6171)  (0.3422)  (0.5837)
. 0.1325 -2.2330H%* -0.4526 1.5104%%*
Time-averaged Charlson -
(0.0843) (0.4238)  (0.4150)  (0.4358)
Ta3ees 320057 287100 0852144
Time-averaged COCI . _ ! ’
(0.0530) (0.4048)  (0.3252)  (0.1633)
. -0.5766*** -0.6218 2.6422%** 1.0780
Time-averaged ERA A
(0.1254) (0.6902)  (0.3809)  (0.6360)
Mal -0.4018* -1.5790 -3.5767FF* -0.6795
nale (0.1646)  (1.2512)  (0.3580)  (0.6821)
N 1330 2666 3088 216

Table 8 : Additional estimates of the binary part of the preferred specification obtained with the CEM
algorithm; Fully robust standard errors are shown in parenthesis; ¥ = p-value< 0.05, ** = p-value< 0.01, ***
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Results - Empirical application

Coefficients Group/Component
1 2 3 4

Continuous part

0.0459 0.0061 041175 0.0102
(0.0304) 0.0312)  (0.0400)  (0.8758)
0.2813 -0.0548%F% 44 7446
(68455.1668)  (0.0138)  (0.0115)  (25.4370)
0.0031 0.0560%%  0.1041%%% 00248
(0.0350)  (0.0208)  (0.0305)  (0.6384)

0.0141 -0.0634%* -0.0080 -0.0533

(0.0164) (0.0196) (0.0133) (0.2976)

Time-varying ERA

Time-varying COCI

Time-averaged Charlson

Time-averaged COCI

0.0495 0.1108%*  0.5744%%* -0.0074
Time-averaged ERA i

(0.0535) (0.0361) (0.0368) (1.0346)

-0.0434 0.0790 -0.0196 0.1092

Male (0.0620)  (0.0615)  (0.0470)  (1.1032)

N 1330 2548 3088

Table 9 : Additional estimates of the continuous part of the preferred specification obtained with the CEM
algorithm; Fully robust standard errors are shown in parenthesis; * = p-value< 0.05, ** = p-value< 0.01, ***
= p-value< 0.001.
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Figure 6: Proportions of the total number of observations in each group at each period (from the preferred
specification with the CEM algorithm). The total number of observations at each period is equal to
{1,330;1,330;1,330;1,326;1,317;1,308;1,305}.

@ The dynamic behaviour of the group membership is modeled in the second
step. The first step consistently estimates the group membership [Bonhomme
et al., 2019, 2022].
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Results - Empirical application

Group at t + 1
Group at ¢ 1 2 3 4
1]0.2284 0.1831 0.3330 0.2554
2101044 0.7587 0.0386  0.0983
3] 0.1339 0.0626 0.5708 0.2328
41 0.1657 0.1219 0.3584 0.3540

Figure 7: Transition matrix estimated from the grouping variable based on the preferred specification estimated
with the CEM algorithm.

e Transitions into "frailty” (groups 2 and 3) are more likely than transitions out
of "frailty” groups.

@ Using exclusively group membership at period t to predict group membership
at period t + 1 correctly classifies 52.2% of all observations.

@ Using a dynamic multinomial logit model with all other covariates increases
this percentage to 61.6% (with only one lag).
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Conclusion

@ Simulation results confirm that maximizing the standard likelihood of a
mixture density leads to inconsistent estimates if the components’ densities
are not infinitely distant from each other.

@ Simulation results also show that the consistent CEM algorithm produces less
biased and more stable estimates than the EM algorithm in finite samples.

@ Estimation results using healthcare expenditures show that the consistent
CEM algorithm yields more credible estimates with smaller out-of-sample
prediction errors than the EM algorithm.

@ A two-step procedure is warranted to model the dynamics of the latent
variable under conditional independence of the outcome from past groupings.

@ The computational burden is an issue : more reliable and faster algorithms
need to be developed to reach the global maximum of the objective function.

@ All specifications in the first step are static. Introducing lagged dependent
variables and feedback effects are left for further research.
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" Approximate” MLE of 7

o Let's define the gt" posterior probability of the itth observation as follows :

fg()’it|Xit;9g) i 7rgfg()’it|Xit; ag) (12)

Titg (0, ) 1= = ,
(0. ) f(yielxie; 0, ) Z,Gzl 1fi(Yie| Xie: 01)

@ The probability iz (6, ) represents the probability that the it™" observation
has arisen from the gt group's/component’s density.

@ This comes from a direct application of Bayes’ rule on the unobserved
grouping variable z,

@ Recall that

N T
L(977T) Zzbg(z 7Tg )/It|X/tv ))

i=1 t=1 g=1
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" Approximate” MLE of 7

@ The mixture log likelihood function can be rewritten as [Dempster et al.,
1977, Celeux, 2019] :

T G N T G
L(€7 ’/T) = Z Z Z Titg |Og .ylf|XItv - Z Z Z Titg |Og Titg s
i=1 t=1 g=1 i=1 t=1 g=1
where Tjz = Tjtg(0, ), as defined above by eq.(12).
o If 7jg is taken as given (the "approximation”), then we have that

oL(e, )
BT: 87r ZlogﬂgZZT,tg

i=1 t=1

@ By the properties of the cross-entropy function, the RHS is maximized when

T . . . .
Tg =Q Y ;1> .1 Titg Where o is a normalizing constant. Imposing the unit

constraint 25:1 mg = 1 directly leads to o = #
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Development of the two-component mixture

@ Let's look at the following two-component mixture density with no covariates.
f(yil0,7(0)) := m1(0)A(yil01) + m2(0)f2(yil02).
@ Note that m2(0) = 1 — m1(0) and that 75(0) = —n1(0), where the prime notation stands as

the derivative with respect to 6. Hence, we get that the first-order consistency condition
can be written as follows

™ (O)(A(vi109) — £(vi163))
Eo 5 5 +
f(yi|6°,7(6°)) 0=60
E, |:7T1(00)(f5[/(yl'|91) - le(}’i|92)):| { fy(vil62) } _
f(yi|6°,7(6°)) 0=00 f(yil0°%, 7(0°)) ] lg=g0
@ For simplicity, let's define the asymptotic mixing weights as follows
fi(yil69)
71(8°) := Eo [— >0,
(yil69) + fa(i|69)
which leads to the following derivative :
£ (yil61) fa(yil69) — fi(yil69) £ (vil62)
=) Z:Eo[l 2 1)h } <o
{0 (ROHI) + By 183)) pm0 >
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Development of the two-component mixture

@ If we look only at the first term in the condition, we have that it is equivalent to

. [fl(yl'\@?) - fz()’i|9g)} {f{(y,-|91)fz(yf|98) - fl(y:'|0?)f2/(YI|92)}
£(y:16°, 7(69)) (A (yil69) + f2(yi163))?

=60

while the second term is equivalent to
Ey { f1(yil69) } . |:f1/(}’i|91) - G’(yf\@z)]
fi(yil69) + f2(vil69) f(yil6°, 7(6°)) 0=00
@ Hence, the condition becomes
, [ﬁ(yi|9?) - f2(yl'|9§)} [ﬁ’(y;|01)ra(y,-|92) - ﬁ(yl'\9?)fz'(}’i|92)}
fyil6°, m(6°)) (A(yil6?) + fa(yil69))? =60

0{ f(yil69) }—&-
0=60 f1(vil6?) + fa(yil63)

=0

|:f1/()/f|61) - f2/(yl-‘€2):|
f(yi|6°, =(6°))

0[ fy(yil62) }
f(yil6°, =(6°))

0=00

@ If 7(6°) # 7°, the last two terms will not be equal to zero unless the two densities f;(-) and
() are equal or infinitely distant to each other.
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Example of a circular argument

@ Using the definition of 77(9) from equation (6) and the WLLN, we have that

7.‘.g(@O) — i ZZ fe(yie | xit: g) PoE Zg(eo)fg()’it|xit; 02)
v ! ZI 170 )fl(y’t‘x’t’e ) Doy m(00)fi(yiel xie; 67)

i=1 t=

as N and T tend to infinity.

o If it is true that

) ],
SO m(0°)fi(yie | xie: 69) £

for all g € G, then we do get that 7(#°) £ 7° for all g € G.

@ The above equation is equivalent to

0°)f, Yit | Xity 90
/ ( bl E ,W?f/ (Vie|xit; 9/ Ju(dyir) =
y Z/:l ﬂ—l( )ﬁ(ylt|xlt1 ) =1

which will be true if mg(6°) = 73 for all g € G. This leads to a circular
reasoning that does not prove anything.
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Proof of convergence of m(6°) to 7°

@ Let's impose that fz(yie|xit; 02) = 0 for any g # 22 and for all values of
(Yie, xit) € Y| X 5, where ﬂgzlyg = 0.

@ In this case, we can write that

. [wg(ao)fg(yﬂx,-t;ag)] :/ e (0°) e (vielxe: 02)

f(}/it|Xit; 907 7TO)U(dyit),

f(yielxie; 00, w(6°)) f(yielxie; 00, 7(6°))

mg(0°)fg (vielxie: 02)
= it | Xits d i
/y P Hgg)wzt o (vie e 6% )u(dyie),

= / ™ Ofo(ylt|xlt ) (dylt) - 7r00a
Vg
where the second equality comes from the fact that f;(yje|xit; 6 ) =0 for any
8 7é zlt

@ Therefore, 7Tg, 2, 772 will be true if fz(yie|xie; 6 ) =0 for any g # z2, which

will happen if and only if all component's densmes are infinitely distant from
each other under Assumption 1.
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Proof of Theorem 3.2

e Let's define the categorical assignment variable, z;(6°, p), as follows :

o fo(yiexie; 0°) o fo(xiti|6°)
2:+(0°, p) = z:(6°,60°, p) ;= arg max £ I I ey
«(07, p) t( p)i=arg g€G fﬁ()/it|x,'t; 90) j=1 fzg(xitjwo)

then we have that

lim fi(yie| xie; 0°) ﬁ fi(xitj|6°) ~ lim fi(yie| xie; 0°) H fI(Xitjw?) y

p=oc Fo(yie|Xie: 0°) = oo (xij|6°) oo Fo (it X 6°)

lim fi(yielxie; 0°) ﬁ fi(xit|0°) <1

p—00 fO(y:t|Xltr 0) j=1 it(

for any | € G\Zg and all (i t) pairs as a direct consequence of Assumption 2.
This leads to z, (6°, p) 22 gg for all (i, t) pairs and all g € G as p tends to
infinity, thus implying z,tg(t‘)o,p)
tends to infinity.

zj}, for all (i, t) pairs and all g € G as p
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