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Outline

Introduction

* Presentation of a new Stata command for optimal policy learning (OPL) with observational data
* Focus on data-driven optimal decision-making in multi-action (or multi-arm) settings

Main components of the commands
* Estimation: Techniques for deriving optimal policies
* Uncertainty: Accounting for different attitudes towards risk in decision-making
* Regret Estimation: Measuring the potential regret from decisions using three methods:
o Regression Adjustment
o Inverse Probability Weighting
o Doubly Robust Estimators

Stata implementation
* Introduction to the syntax and usage of the new Stata commands: opl ma fb and opl ma

Application Example
* Focus on an application related to labour and agricultural policies



Introduction to OPL

Optimal Policy learning (OPL) is a technique used for
automizing ex-ante decision processes operated by agents
who have the purpose of carrying out a specific intelligent task

For this purpose, OPL makes use of experience/information
from past decisions (i.e., accumulated data) and exploits them
for “optimal” decision making



Definition of OPL

OPL is a kind of data-driven decision making using machine
learning (ML) and causal inference (Cl) for suggesting optimal ex-

ante decisions based on a past accumulated experience about
decisions undertaken to carry out specific tasks

OPL = DATA + ML + Cl



OPL: main objects

= The person/institution in charge of the choice
Task = Objective for taking a certain decision

Environment = external-to-agent conditions
Action = available choice alternatives

Reward = Positive achievement measured after decision is made



Real examples of OPL

Example 1. Commuting to work

Agent = one single person
Task = commuting to work
Environment = temperature, humidity, traffic jam

Action = Commuting modes: car (A), walk (B), public transportation (C)

Reward = Positive feeling in a scale (0-10) measured at the end of the day

Example 2. Business advertising decision

Agent = a business
Task = raising weekly profits
Environment = competitor strength, operative costs, productivity

Action = Advertising modes: internet (A), newspapers (B), television(C)

Reward = Weekly net-profits

Example 3. Medical treatment

Agent = a doctor
Task = providing a treatment to a patent
Environment = symptoms, blood texts, reporting

Action = treatment modes: T1 (A), T2 (B), T3 (C)

Reward = Positive recovery probability

Example 4. Enrollment in a policy program

Agent = a policy-maker
Task = selecting policy beneficiaries
Environment = individual characteristics

Action = selecting modes: Yes (A), No (B)

Reward = Positive effect of the policy on the individual



Environment - Action - Reward

Y = return (outcome, payoff, reward)
X = environment (state of the world, context)
D = choice (action, policy, decision)

Environment Action Reward




The decision-making setting

Consider an agent 2 having to choose at time t between a set of .J 4+ 1 different actions
Dy ={0,1,2,...,4,...,J} with corresponding set of rewards {Y;;(0), Y;;(1),..., Y (J)}
with distributions {F;;(0), Fi (1), ..., Fu(J)}.

Define the agent’s action indicator function d;;(j) = 1|Dy = j|, with j =0,...,J,
taking value 1 when the agent selects action 5 and 0 otherwise.
Define as x;; a set of p features that represent the signal from the environment

(the agent i belongs to) at time ¢.



Potential outcomes

These are potential outcomes: we can observe only one of
them, never all at the same time:

Dy ={0.1,2,....4,...,.J}



Non-identification of the optimal choice

Set of actions: {0, 1, 2}

Time Y, D, d,(0) d,(1) 4,(2) Y00 Y1) Y2 X
1 Y, 0 1 0 0 Y, . X,
2 Ys 0 1 0 0 Ys X,
3 Y3 0 1 0 0 Y3 X3
4 Y 1 0 1 0 Y X4
5 Yy 1 0 1 0 Ys Xy
6 Ye 1 0 1 0 Ys Xg
7 Y; 1 0 1 0 Y; X,
8 Ya 1 0 1 0 Ya S ¢
9 Yo > 0 0 1 Yo Xo
10 Yio 2 0 0 1 Yio  Xio

Table 1: Example of non-identification of counterfactual rewards. Observe that X; is the signal from
the environment.
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Potential outcome

At each time ¢, agent 7z can choose only one out of the .J 4+ 1 possible alternatives.

His observed reward, Y,, is thus equal to:
Yie = di(0)Yi(0) + - - - + di(5)Ye(ig) + - - - + di(J) Yae(J)

as only one of the .J + 1 potential rewards can be observed for individual 7z at time ¢.
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The decision-making setting

Given a certain configuration of the environment (that is, for a given x;;), we

define the conditional expected reward if agent ¢« when he chooses action j as:

it (7, Xit) = B(Yae (5) [ %a) Optimal Decision Rule
(ODR)

which implies that the optimal action 7* to select is:

75 =Aj  max{pi(j,xi)},7=1,0,...,J}

Unfortunately, this optimal choice cannot be identified by data as it entails the
knowledge of counter-factual quantities. Indeed, for each j, u;(j,x;) is inherently

unknown.
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Identification

Following Cattaneo (2010) and Cattaneo and Drukker (2013), however, two as-

sumptions allow to identify the onditional expected reward from data:

A1l. Selection-on-observables. For all j =0,1, ..., J:

Given x the potential
Y(5) Ld(5)|x » outcome and the choice
dummy are independent

A2. Overlapping. For all j =0,1, ..., J:

The propensity score is
never equal to 0

0 < Prmin < pi(x) with p;(x) = P(D = j|x). .

Under assumptions Al and A2, we can prove that:
The counterfactual

: : . becomes function of
[ pir(J, Xir) = B(Yie| Die = J, Xir) ] " observable elements




Under assumptions Al and A2, we can prove that:

,Uit(ja Xit) — E(Yz’t|Dit = 7, Xit)

A A

Counterfactual Observable
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Estimable optimal decision rule (ODR)

Procedure 1. Optimal action selection under assumptions A1 and A2

e Generate the mapping between Y;; and x; for each D;; = 0,1,...,.J using
a specific learner, and obtain the following set of .J predictors:

M = { (0, %), { fuae (1, Xae), - -, fae(J, Xit)s - - -5 fae(J, Xar) }

e Given a new environment signal x;_1, evaluates the previous set of predic-
tions at t + 1, thus getting:

Mi,t+1 = {ﬁi,t+1(0, Xi,t—{—l)a {ﬂi,t+1(17 Xz’,t—i—l); e :/'ALi,t—l—l(ja Xi,t—}—l)a Cee ,[Li,t+1<J7 Xi,t—l—l)}

e Select the best action to undertake at t + 1 according to this rule:

Jeor = {7 - max{M;1},7=1,0,...,J}
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Estimate of the mapping between Y, and [X| D]

* The mapping between Y, and [X| D] is uncertain (or stochastic)

* We have to considered the “expected return”

E(Y | X,D)

» Expected potential return,
given environment X and choice D
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An example with 3 actions: A, B, C

- Define the conditional expectation of Y, given X in the three states of the world {A, B, C}
- Make the decision having the largest conditional expectation

Wia = E(Ya | X;, D;=A)
uiB = E(YB Xi ) D
Wic = E(Yc | X;, D;=C)

These are three potential
i= B) < returns arising when action is
either A, B, or C

In general it is not

identified by
Optimal Optimal decision observation
decision
rule 1

g Di* = {D max[l"iD]l D = (AI BI C)}
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ML-based Regression Adjustment estimation of u;,

Under assumption (i) and (ii), suppose to have the following i.i.d. dataset {Y,X,D;} with i = 1,...,N, with
D made of three actions D ={0, 1, 2}, then an estimation of y, is:

Uip = Up (X;) = E(Y;]X;,D;)

can be obtained using a prediction of Y; obtained from an ML regression of Y on X in the sub-group of
units having D..

In this way, we have an estimate of all the counterfactuals for each unit i.
PROCEDURE:
1. Generate the mapping between Y; and X; under D=0, 1, 2 by an ML-RA

2. Given X;, compute the predictions [i,,, i, il;, using the previous ML-mappings
3. Apply the ODR to select the action to undertake
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Optimal action selection

===

Training
data

—

New decision
to make

Identifier Y, D, X, 1:(0,X) f(1,X7) 1:(2,X)

1 Y 0 X Yio Vi Yia

2 Y, 0 X Y20 Vo | 2}

3 Y3 0 X3 Yo 2% ) 29}

4 Yy 1 Xy Yio Ya Yis

5 Ys 1 X5 Y50 Ys Vs,

6 Yg 1 Xs Y60 Yo Vs

7 Y; 1 X7 Y10 Y7 ) 2P

8 Yy 2 Xg Y50 Ys.1 Y5

9 Y 2 X Yoo Yo Yo,
10 Yyo 2 X1 Yioo Yioa Y102
11 100 0 X1 f,00,X;) =100 | @, (1,X;;)) =50 | [,(2,X) =30

A A \
|
Prediction

Best actionis O
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Uncertainty




Return and uncertainty - 1

* High returns can be associated to higher uncertainty

 Choosing action A instead of B, depends not only on the
average returns of each option, but also on the
uncertainty in getting such returns

* Decision making must ponder return and uncertainty
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Return and uncertainty - 2

Q | |
- |
| Return distribution of action A
|
| c . . .
© | Return distribution of action B
< |
|
|
|
| Action A provides a lower average return, but
S : with smaller uncertainty
' |
: Action B provides a higher average return, but
| with larger uncertainty
o |
O |
|
|
|
|
| |
| |
© | |
| |

0 10 20 30 40 50 60 70 80 29



Measuring uncertainty: variance

In statistics, uncertainty is generally measured via the
variance of the distribution of Y. Thus, while the expected
return of Y is E(Y), its variance is V(Y):

V(Y) = E[Y — E(Y)]> = E(Y?) = {E(Y)}’

|

This equality is precious as it simplifies
variance’s computation in many contexts
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Variance as a measure of distribution spread

.03
|

The variance is a measure of how spread is
the distribution around its central value

.02
|

Density

.01
|

© | |

E(Y)-V(Y)  E(Y)  E(Y)+V(Y) 2



Conditional variance - definition

Conditional uncertainty can be measured via the
conditional variance of the distribution of Y|X. Thus, while
the conditional expected return of Y|X is E(Y|X), its

conditional variance is V(Y | X):

V(Y[X) = E[Y = E(Y) [ X]* = E(Y?|X) = {E(Y[X)}*



Conditional variance - estimation

The estimation of the conditional variance is rather simple:

V(Y[X) = E[Y — E(Y) [ X]? = E(Y*| X) = {E(Y|X)}*

| |

Regression of Y2on X  Regression of Y on X

NOTE: whatever learner can be used to estimate these two regressions:
boosting, neural nets, random forests, etc. %



Conditional return and conditional uncertainty

Medium return Low return High return
Medium uncertainty Low uncertainty High uncertainty

D(Y | X, action=A)

Conditional distribution of Y given X
when action A is selected




Conditional variance by action

We define the conditional variance by action as:

0% = ValX;) = Var(Y
0% = Va(X;) = Var(Y
0%ic = Va(X;) = Var(Y

X:, if action = A)
X;, if action = B)
X:, if action = C)



Different preferences over i and o

Utility functions:

u Up=1
Up="%
U
U2=;
Uy =0.5 Utility indifferent functions:
J7i
l]1 = — = k —l ﬂ = k 0O
o
_k_ 2
U, =—= k u=k-o
o

Action A > B under a linear indifferent curve (U,)
Action A ~ B under a quadratic indifferent curve (i.e., U,)

29



Preference inversion over i and o

1.3

Accordingto U, == => B> A

=> A>B

QN|-; Q=

According to U, =

|

This implies that we can have
preference inversion depending
on the attitude toward risk
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Definition of REGRET

In policy learning, "regret" refers to the difference in performance between a
generic policy and the optimal policy learnt from data.

R = E[W(r")] — E[W(7)]

N

Expected welfare of Expected welfare of
the optimal policy a generic policy
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Regret estimation: RA

Regression adjustment (RA ). This approach estimates the value function using regres-
sion estimates of the counterfactual (potential) outcomes. As such, it is also known

as the direct method. The regression adjustment formula is:

Vra(T) = ~ Z fui(m(Xi), Xi)

where fi;(7(x;),X;) = Z}'I=0 fi(j, x;) - mi; with m;; = 1[m; = j]. The RA approach
provides a consistent estimation of the value function provided that the functional

form of the regression model is correct. If this is not the case, this approach can be
highly biased.
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Regret estimation: IPW

Inverse probability weighting (IPW). The formula of this estimator of the value-

function i1s:

l[D =T x, )|Yi
Vipw (1 =N Z

where pp.(x;) is an estimate of the propensity score. The IPW approach does not
require an estimation of the mean potential outcomes; rather, it uses directly the
values of the observed outcome variable Y. Unfortunately, this estimation method is

biased when the propensity score functional form is misspecified.
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Regret estimation: DR

Doubly-robust (DR). This estimator of the value-function, derived from the optimal

influence function, takes on this formula:

1 N fii(Di, x;)] - 1[D; = m(x; .
Vpr(T) = N; ppz](xz)[ (i)l + fri(m(X:), Xi)

Unlike the RA and IPW approaches, the DR does not require for its consistency
that both the propensity score and the conditional mean are simultaneously correctly
specified. Only one out of the two must be correctly specified, with the other being

potentially also mispecified.
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Implementation

Two modes to learn the optimal decision:

e Offline learning

we learn the new optimal action by re-fit the model over
the entire dataset

* Online learning

we learn the new optimal action incrementally, as new
information gets in
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Software: Stata commands

Stata commands:
o opl ma £b :for estimating the optimal policy
o opl ma: for estimating the regret

soon available on SSC.



Stata command: opl ma fb

Training policy

Outcome and features <
(observed)

v

(observed)

opl_ma_fb $y $X , policy_train(sw) ///

|

- risk_peutral
- risk_averse_linear
- risk averse_quadratic

model($model) ///

Optimal policy

v

name_opt_policy(" _opt_policy") ///

(generated)

Data on new

v

new_data(my_new_data) ///

|

Graph actual vs.
optimal actions
(generated)

gr_action_train("grl") ///

population
(observed)

» Graph actual vs.

|
gr_reward_train("gr2") ///

Graph actual vs.

optimal reward

in the new data
(generated)

«—— gr_reward_new("gr3")

optimal reward
(generated)
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Stata command: opl ma

skokskokokskskokokskskskokokokskskskokskskskokokokskskokokskkskokskok sk kskokkokskokokkskskok ok sk ok skok ok ok
* REGRET ESTIMATION USING "opt_ma.ado"
skokskokkskskokoskskskokokokskskokskokskskskokokskskokskokskskskokokok sk ksksk sk kskokok sk ok skok sk sk kskok ok ok
* Value-function "first-best policy"
Training policy
(observed)

opl_ma $y $X , policy_train($w) policy_new(_opt_policy)

Optimal policy from opl ma fb
(generated)

v

gl EV_RA_opt=e(RA) // regression adjustment
gl EV_IPW_opt=e(IPW) // inverse probability weighting
gl EV_DR_opt=e(DR) // double robust

* Value-function "training policy"

cap drop _D*x _pix

opl_ma $y $X , policy_train($w) policy_new($w)
gl EV_RA_curr=e(RA)

gl EV_IPW_curr=e(IPW)

gl EV_DR_curr=e(DR)

* Regret estimation

global regret_RA=$EV_RA_opt-$EV_RA_curr

di in red "Regret RA = "$regret_RA

global regret_IPW=$EV_IPW_ opt-$EV_IPW_ curr

di in red "Regret IPW = "$regret_IPW

global regret_DR=$EV_DR_opt-$EV_DR_curr

di in red "Regret DR = "$regret_DR
skokskokskokokskokskskskokskskskskskokskskskok sk sk sk skok sk ok koksk ko ok sksksk sk skokskoksk ok sk sk sk sk skok sk k ok
* End

kkokokskoskokokokokkkokkokkkskkokokkkkkokkkskkokok sk kkokokk sk skkkok sk kkokokk sk ko kok sk k k>
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Application 1. Labour Policy

As an illustrative example, I utilize the well-known Lal.onde (1986) dataset jtrain2.dta,
which was employed by Dehejia and Wahba (1999) to assess various propensity-score match-
ing methods in an ex-post policy evaluation. In their investigation, the authors aimed to
estimate the impact of participating in a job training program administered in 1976 (in-
dicated by the binary variable train, taking the value 1 for treated individuals and O for
untreated) on real earnings in 1978 (variable re78) for a group of individuals in the United
States. The dataset comprises a total of 445 observations, with 185 individuals treated and
260 untreated.
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Setting

In our study, we designate the number of months of training (variable mostrn) as the
treatment variable D, ranging from 0 to 24 months. The median for treated individuals is

21 months. Consequently, I construct a 3-arm set of actions:
e Action 1: no training, D = 0, Ny = 260;
e Action 2: training between 1 month and 21 month, D =1, N; = 107;

e Action 3: training lasting from 22 to 24 months, D = 2, Ny = 78;.
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Case 1. Risk-neutral setting

Actual vs. optimal action allocation

(Training dataset)
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Model: Risk neutral
Variable | Obs Mean Std. dev.
__________ +_____________________________________-
match | 50 e 46291

Actual vs. maximal expected reward
(Training dataset)

Observation / Round

—— Max expected reward —*— Actual reward

Model: Risk neutral
Average max reward: 13.01

Regret RA = 8.891423
Regret IPW = 3.7557106
Regret DR = 7.3346037

42



Case 2. Risk-adverse linear setting

Actual vs. optimal action allocation Actual vs. maximal expected reward
(Training dataset) (Training dataset)
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Regret RA = 3.4163201
Regret IPW = .55887842
_match | 50 .54 .5034574 Regret DR = 2.5841078

Variable | Obs Mean Std. dev.

43



Case 3. Risk-adverse quadratic setting

Actual vs. optimal action allocation Actual vs. maxllr.nal expected reward
(Training dataset) (Training dalasel)
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__________ D e Regret IPW = .03672314
Regret DR = 1.0449446
_ match | 45 2 .4045199 -
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Application 2. Agricultural Policy

Dataset: Farm Accountancy Data Network (FADN). Collection of 140,788 observations
from 31,813 unique agricultural holdings over a 12-year period from 2010 to 2022. We
consider only year 2022:

o Data: Subset of around 200 firms

o Outcome: Farm net-income

o Treatment: 0, 1, 2, 3 (1.e., 0 = no-treatment, 1 = direct payments, 2 = market
enhancing measures, 3 = national and regional subsidies)

o Features: Farm characteristics, like: size, location, type of crop production, etc.
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Results (risk neutral)

Actual vs. optimal action allocation Actual vs. maximal expected reward
(Training dataset) (Training dataset)
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Average max reward: 314804.06



Conclusion

 OPLis based on imitation learning

e OPLimplemented in Stata (soon in Python as well)

* OPLrelies on assumptions Al and A2

 Weak overlap (failure of A2) poses severe limitations

* Risk preferences are key for learning the optimal policy
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This paper deals with optimal policy learning (OPL) with observational data, i.e. data-driven optimal decision-making, in multi-action (or
multi-arm) settings, where a finite set of decision options is available. It is organized in three parts, where | discuss respectively: estimation,
risk preference, and potential failures. The first part provides a brief review of the key approaches to estimating the reward (or value) function
and optimal policy within this context of analysis. Here, | delineate the identification assumptions and statistical properties related to offline
optimal policy learning estimators. In the second part, | delve into the analysis of decision risk. This analysis reveals that the optimal choice
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conditional variance. Here, | present an application of the proposed model to real data, illustrating that the average regret of a policy with
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optimal data-driven decision-making by highlighting conditions under which decision-making can falter. This aspect is linked to the failure
of the two fundamental assumptions essential for identifying the optimal choice: (i) overlapping, and (ii) unconfoundedness. Some
conclusions end the paper.
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