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Prologue
Back in 2010 Robert MacCallum (UNC Chapel Hill) gave a presentation to our 
departmental colloquium series on fungible parameter weights in structural 
equation modeling. In his talk he mentioned that fungible weights also applied 
to multiple regression.


His presentation piqued my interest so I decided to look deeper into this topic.



fun•gi•ble 

Adjective 

(of a product or commodity) replaceable by another identical item; freely 
exchangeable for or replaceable by another of like nature or kind; mutually 
interchangeable:  money is fungible — money that is raised for one purpose can 
 easily be used for another.

Webster says…

It is a truism that cash is fungible. 

It is also true that mushrooms are not fungible. They are fungi. 



Ordinary Least Squares Regression (OLS)

• The goal in OLS regression is to estimate a set of weights 
(coefficients) such that the residual sum of squares (RSS) is a 
minimum.


• Further, the R-square between the response variable and the 
linear combination of the predictors (r2 ) is a maximum, which I 
will denote as R2max.


• Thus, (1-R2max)•TotalSS = RSS


• There is one, and only one, set of such weights (coefficients) that 
meet this requirement, i.e., the solution is unique.

Y ̂Y



But, what if …
• But what if you estimate an alternative set of coefficients such that R2a  is only 

a small fraction less than R2max? Say, one-half of one percent (0.005) less.


• Let’s call the R-square for the alternative weights R2a.


• Thus, R2max- R2a = R2max-0.995R2max = 0.005


• How close are these fungible coefficients to the original coefficients? Do they 
cluster around the observed coefficients? How many fubgible coefficients are 
possible?



I’ll spare you the suspense
• As it turns out, with three or more predictors there are an infinite number 

of sets of coefficients that yield a difference from R2max of 0.005.


• Further, these coefficients can, and do, look very different from the 
original coefficients.


• So, I sorta wrote a program to explore these fungible coefficients.



The command regfungible.ado will estimate alternative fungible regression weights. 

regfungible, sets(#) theta(#) prefix(string) seed(#) print 

where, 
sets(#)       : number of sets of weights -- may be larger than _N 
theta(#)      : difference of RSQb-RSQa (default = .01) 
prefix(string): prefix for new variables (default is "v_") 
seed(#)       : set random seed 
print         : display additional output 

regfungible.ado



I didn’t actually write regfungible as much as I translated it from an R 
function by Niels G. Waller (2008) from the University of Minnesota. 

To be honest, I don’t really understand all of the math in his 
Psychometrika article so I won’t try to explain it. 

Although I’m not very fluent in R, translating Waller’s code into Mata 
was relatively straight forward. 
 

What do I mean by sorta wrote a program



. use https://stats.idre.ucla.edu/stat/data/hsbdemo, clear 

. regress socst read math science 
*   regress required before running regfungible 

. regfungible, sets(1000) theta(.005) prefix(w_) seed(19) 

Example using hsbdemo.dta dataset

Note: the number sets can be larger than the number of observations.



OLS fungible regression weights analysis  

 Original R2: RSQb =  .4187076  
 Reduced R2:  RSQa =  .4137076  
 theta = RSQb-RSQa =      .005  
 r_yhata_yhatb     =  .9940113  

regfungible.ado generated 1,000 sets of coefficients each of which 
had an R2a of .4137076. The correlation between the predicted  
values from the original OLS and the predicted using the alternative  
coefficients was .9940113. 

Output 1



 Standardized OLS regression weights 
          
           1             2             3 
  1   .4480658545   .2199795336   .0440053932   

These are the standardized coefficients from the original OLS 
regression. Note the low coefficient for variable 3.


The fungible regression weights are displayed as standardized 
weights for computational ease. regfungible does not compute 
raw fungible regression weights only the standardized 
coefficients. 


Output 2



 Maximum fungible regression weights for each variable  
                 1             2           3 
  1 |  .5309603441   .1535344376   .00027434   
  2 |  .3843593917   .3153093707   .0067823647   
  3 |  .4030944979   .1795592346   .1406651808   

 Minimum fungible regression weights for each variable  
                  1              2            3 
  1 |   .3544721562    .2806466729    .08729649   
  2 |   .500337233     .1193873672    .0811681338   
  3 |   .4820592823    .2554627866   -.0537063386 

Output 3



Here’s how to read the tables for Output 3. Of the 1,000 sets of weights the 
highest coefficient for the first predictor (read) is .5310 (rounded). The other two 
values in that row are to coefficients for math and science when read takes on its 
maximum value (observation 25).

 

The second column and row are interpreted in a similar manner for the variable 
math. The third column and row for science. 


The table for minimum weights works in a similar manner. 


Explanation of Output 3



Summary of fungible regression weights 

   Stats |       w_1       w_2       w_3 
---------+------------------------------ 
       N |      1000      1000      1000 
    Mean |  .4472829  .2147603  .0404114 
      p5 |  .3557416  .1201262 -.0520651 
     p25 |  .3821528  .1443142 -.0253707 
     p50 |  .4543421  .2134189  .0398007 
     p75 |  .5104564  .2843172  .1042769 
     p95 |  .5303973  .3135495  .1388187 

Observed |  .4408659  .2199795  .0440054 

Note: The means of the 1,000 fungible weights are, in fact, very close to the observed 
standardized OLS coefficients.


Output 4



Generated Fungible Coefficients
The regfungible command generated 1,000 sets of regression weights. Each set has an R2alt of 0.417076 with the original 
response variable. Here are the first 10 sets of fungible coefficients:

. list w_* in 1/10 

     +---------------------------------+ 
     |      w_1        w_2         w_3 | 
     |---------------------------------| 
  1. | .5303477   .1452587     .010781 | 
  2. | .5205218   .1260296    .0464213 | 
  3. | .4989157   .1194042    .0830479 | 
  4. | .5145808   .2085491   -.0422424 | 
  5. | .3685594   .3112611    .0326337 | 
     |---------------------------------| 
  6. | .4852165   .2517878   -.0536229 | 
  7. | .4432466   .2913173   -.0438174 | 
  8. | .5028303   .2283259    -.049693 | 
  9. | .3613705   .3049778    .0495953 | 
 10. | .5292507    .140233    .0181302 | 



. list w_* in 523/527 

     +---------------------------------+ 
     |      w_1        w_2         w_3 | 
     |---------------------------------| 
 23. | .5301372   .1642883   -.0112148 | 
 24. | .3992974   .1840107    .1405279 | 
 25. | .5309603   .1535344    .0002743 | 
 26. | .4292087   .1536423    .1361107 | 
 27. | .3718804   .3128987    .0262792 | 

A closer look at observation 25



. corr w_* 
(obs=1,000) 

             |      w_1      w_2      w_3 
-------------+--------------------------- 
         w_1 |   1.0000 
         w_2 |  -0.6792   1.0000 
         w_3 |  -0.4350  -0.3654   1.0000 

Correlations among the fungible coefficients



Matrix graph of fungible coefficients
With three predictors 
the fungible weights 
would graph onto the 
surface of an 
ellipsoid.


However, we will 
make do with a 
scatterplot matrix.


Ellipses are not lines 
but 1,000 scatterplot 
points of fungible 
coefficients.
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Kernel density plots of fungible coefficients
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Vertical lines at observed standardized 
coefficients.

Kernel density plots revisited
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Fungible weights at 2%, 1%, & 0.5%
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What about predicted scores?
I generated three predicted standard scores (zhat1, zhat2, zhat3) using coefficients the 
from the table of maximum fungible regression weights for each variable. Recall…


          1             2           3 
  1 |  .5309603441   .1535344376   .00027434   
  2 |  .3843593917   .3153093707   .0067823647   
  3 |  .4030944979   .1795592346   .1406651808 

. sum zhat1 zhat2 zhat3 

    Variable |        Obs        Mean    Std. dev.       Min        Max 
-------------+--------------------------------------------------------- 
       zhat1 |        200   -1.70e-09     .643201  -1.413063   1.417385 
       zhat2 |        200    2.48e-09     .643201  -1.238322   1.475447 
       zhat3 |        200   -1.74e-09     .643201  -1.264543    1.45036 

Note: All 3 have the same standard deviation but different min and max. All have R2 of 
.413707 with the response variable (Not shown).




Predicted standardized values
. list zhat1 zhat2 zhat3, clean 

           zhat1       zhat2       zhat3   
  1.   -1.135539   -1.090984   -1.264543   
  2.   -1.135345   -1.086189   -1.165092   
  3.   -.8275256   -.8046313   -1.053091   
  4.   -.9636809   -.9421247   -1.070602   
  5.   -.8927192   -.9303521   -.9450608   
  6.   -.7048054    -.756056   -.9024416   
  7.   -1.208678   -1.028315   -1.144583   
  8.   -.3232099   -.5214121   -.5836322   
  9.   -1.007355   -1.163893   -1.036604   
 10.   -1.053319   -.9158516   -1.026638   
 11.    -1.15165   -1.117791   -1.141636   
 12.   -.9252744   -.9921849    -.869735   
 13.   -.4129591   -.4978791   -.5964971   
 14.    -1.09716    -1.14173   -1.077883   
 15.   -1.099531   -1.072083    -.931833 



Converting standardized coefficients to raw regression 
coefficients. 

bxi=Bxi*SDy/SDxi

Why does regfungible generate  
standardized coefficients?

Mathematically and computationally it’s much easier to estimate 
the standardized fungible coefficients.


 However, it is fairly straight forward to covert standardized 
coefficients to raw coefficients.



Fungible weights are interesting, but are they useful?

Waller (2008) suggests that fungible regression weights are useful as a kind of 
sensitivity analysis providing an alternative method of estimating parameter 
variability (an alternative to bootstrap or likelihood methods).


I like to show fungible coefficients to students when they turn in their first 
multiple regression projects. Students have a tendency to believe that the 
coefficients in their model are a window into the “truth”. That fungible 
coefficients can fit the model almost as well comes as a bit of a shock to 
them.
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