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the power of the scatterplot

• displays the relationship of two variables

• intuitive to non-statisticians

• shows outliers and clustering

• trend line summarizes the linear correlation

• each observation’s contribution to trend is visible

• confidence interval shows closeness of fit

• interval excluding zero slope shows significance
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added-variable plot

• scatterplot can only show one x correlate

• want bivariate scatter conditional on other correlates

• this is an added-variable plot 

• aka partial regression plot

• displays partial correlation 

• variable y  vs.  variable of interest x

• condition on other variables X2
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calculation

• regress y on  and take residual X2 ey

• i.e. variation in y unaccounted for by X2

• regress x on  and take residual X2 ex

• i.e. variation in x unaccounted for by X2

• graph  vs. ey ex

• y and x purged of the influence of X2

• trend line slope is the OLS coefficient on x
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avplot features

• more accessible than coefficients in a table

• see influence of each observation on estimated coefficient

• shows outliers and clustering

• confidence interval shows goodness of fit

• statistically significant if  is excluded (for )ey = 0 ex ≠ 0

• zero confidence interval at ex = 0

• at this value, x is entirely accounted for by X2
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ORIGINS

• developed ~1980 as visual diagnostics for outliers

• real potential:

• graphical representation of estimation results

• first saw in papers by Dani Rodrick, trade economist

• problem:

• only available for OLS regression

• most research uses more complex estimation
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expansion
• oddly, no confidence intervals - avciplot

• ”scratch my itch” - xtavplot

• apply to fixed effects (an OLS estimation)

• random effects, as GLS, has OLS representation

• wider applicability: Wang (1985) for GLM

• theory paper deriving avplot for

• linear & nonlinear LS, MLE, GMM

• can create avplots for (almost) all estimators in Stata

• will take time - must be programmed for each estimator
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AV plot derivation

For the estimation equation 

y = x1β1 + ⋯ + xKβK + ε = Xβ + ε

OLS estimator  of :b β

  b = (X⊤X)−1X⊤y

Partition 

    and   X = [x1X2] b = [b1

b2]
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Frisch–Waugh–Lovell theorem

With some manipulation,

b1 = (x⊤
1M

⊤
2M2x1)−1x⊤

1M
⊤
2M2y

    where            “residual-maker”M2 = I − X2(X⊤
2X2)−1X⊤

2

Define  and . ex1
= M2x1 ey = M2y

Then

.b1 = (e⊤
x1

ex1
)−1e⊤

x1
ey

Added-variable plot:  graph  vs.   
trend line has slope .

ex1
ey

b1
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then by the FWL theorem,

 ̂β1 = (e⊤
x̃1

ex̃1
)−1e⊤

x̃1
eỹ
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non-OLS estimators

If we can express other estimators in terms of  
transformations of  and  such that y X

,̂β = (X̃⊤X̃)−1X̃⊤ỹ
then by the FWL theorem,

 ̂β1 = (e⊤
x̃1

ex̃1
)−1e⊤

x̃1
eỹ

so we can create an added-variable plot.

Essentially all estimators can be represented in the OLS form 
(asymptotically, everything is linear)
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Generalized Least Squares

  and   y = Xβ + ε V[ε |X] = Σ
(instead of OLS’s )V[ε |X] = σ2I

̂βFGLS = (X⊤Σ̂−1X)−1X⊤Σ̂−1y
Transforming  and ,X̃ = Σ̂−1/2X ỹ = Σ̂−1/2y

̂βFGLS = (X̃⊤X̃)−1X̃⊤ỹ .
Added-variable plot of  versus .ex̃1

eỹ
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  and   
but   and .

y = Xβ + ε E[ε |X] ≠ 0
E[ε |Z] = 0 Cov[X, Z] ≠ 0

Define X̂ = Z(Z⊤Z)−1Z⊤X
̂β2SLS = (X̂⊤X̂)−1X̂⊤y

Added-variable plot of  versus .ex̂1
ey
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next steps
• instrumental variables and system estimation

•  ivregress, ivreg2, reg3

• more panel estimators

• besides xtregress, xtregar, xtabond2

• in future

• time series: arima, garch, var

• survival and limited dependent variables

• everything else



Blundell & Bond dynamic panel estimation
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additional points

• added-variable plots especially good for illuminating 
complex estimators

• insightful for dummy variables

• whether independent or dependent

• A-V plot good for explaining estimated coefficients

• not good for exploring functional form

• use binscatter binsreg, which can account for other 
correlates



Scatter plot of foreign dummy vs. mileage
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Extremum estimators encompass MLE, NLS and GMM 
estimators:

max
β

q(β |y, X)

Estimator  implicitly defined by F.O.C.̂β

s( ̂β) ≡
∂q(β |y, X)

∂β
= 0
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.̂β = Ĥ−1(Ĥ ̂β + ̂s)





 allows us to linearize  ̂β = Ĥ−1(Ĥ ̂β + ̂s) ̂β
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 allows us to linearize  ̂β = Ĥ−1(Ĥ ̂β + ̂s) ̂β

if it is possible to find  and  such thatX̃ ỹ
 and .Ĥ = X̃⊤X̃ Ĥ ̂β + ̂s = X̃⊤ỹ

Then   ̂β = (X̃⊤X̃)−1X̃⊤ỹ
and we can construct added-variable plots.
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nonlinear least squares

y = μ(X, β) + ε
for a known nonlinear function .μ( ⋅ )

min
β

ε⊤ε

results in     and ̂s = 2�̂�⊤(y − ̂μ) Ĥ = 2�̂�⊤�̂�

where �̂� ≡
∂μ(X, β)

∂β⊤

β= ̂β
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where X̃ = �̂� and ỹ = y + �̂� ̂β − ̂μ .

if  were linear, μ(X, β) μ(X, β) = Xβ
.X̃ = X and ỹ = y
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eỹ
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where X̃ = �̂� and ỹ = y + �̂� ̂β − ̂μ .
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If the mean of  is a nonlinear function of 
explanatory variables  and coefficients  where

t(y)
X β

μ = μ(X, β)

and , then𝓜 ≡
∂μ(X, β)

∂β⊤

̂s = �̂�⊤Σ̂−1(t(y) − ̂μ)
and .Ĥ = �̂�⊤Σ̂−1�̂�

̂βMLE = Ĥ−1(Ĥ ̂β + ̂s) = (X̃⊤X̃)−1X̃⊤ỹ
where X̃ = Σ̂−1/2�̂� and ỹ = Σ̂−1/2(t(y) + �̂� ̂β − ̂μ) .
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n Ĝ⊤ZΩ̂−1Z⊤ĝ
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All the previous estimators are GMM

and the predicted score is

ŝ = � 2

n
Ĝ>Z⌦̂�1Z>ĝ,

where ⌦̂ ⌘ Z>⌃̂�1Z, Ĝ ⌘ G|�=�̂ and ĝ ⌘ g(�̂,y,X).
By Equation 5,

�̂GMM = Ĥ�1(Ĥ�̂ + ŝ)

=
⇣
Ĝ>Z⌦̂�1Z>Ĝ

⌘�1⇣
Ĝ>Z⌦̂�1Z>(Ĝ�̂ + ĝ)

⌘

= (X̃>X̃)�1X̃>ỹ

where

X̃ = ⌃̂�1/2Z
⇣
Z>⌃̂�1Z

⌘�1
Z>Ĝ and ỹ = ⌃̂�1/2Z

⇣
Z>⌃̂�1Z

⌘�1
Z>

�
Ĝ�̂ + ĝ

�
.

(8)
All of the estimators discussed previously in this paper can be represented

as special cases of the nonlinear GMM estimator. To represent MLE estimators
as a GMM estimator, the population moment assumption is E[ @`@� ] = 0. Table

1 shows the form of the elementary zero function g(�,y,X), the instruments
Z, the variance of g(�,y,X) and the X̃ and ỹ values used to form the residuals
ex̃1 and eỹ graphed in the added-variable plot.

Table 1: Special cases of GMM estimators

Estimator g(�) Z V [g] X̃ ỹ

OLS y �X� X �2I X y
GLS y �X� X ⌃ ⌃̂�1/2X ⌃̂�1/2y
2SLS y �X� Z �2I Z(Z>Z)�1Z>X Z(Z>Z)�1Z>y
3SLS y �X� Z ⌃ ⌃̂�1/2Z(Z>⌃̂�1Z)�1Z>X ⌃̂�1/2Z(Z>⌃̂�1Z)�1Z>y

MLE exp t(y)� µ(X,�) M̂ ⌃ ⌃̂�1/2M̂ ⌃̂�1/2(t(y) + M̂�̂ � µ̂)
NLS y � µ(X,�) M̂ �2I M̂ y + M̂�̂ � µ̂

NLS ⌃ y � µ(X,�) M̂ ⌃ ⌃̂�1/2M̂ ⌃̂�1/2(y + M̂�̂ � µ̂)
lin GMM y �X� Z ⌃ ⌃̂�1/2Z(Z>⌃̂�1Z)�1Z>X ⌃̂�1/2Z(Z>⌃̂�1Z)�1Z>y
NL GMM g(�,y,X) Z ⌃ ⌃̂�1/2Z(Z>⌃̂�1Z)�1Z>Ĝ ⌃̂�1/2Z⌦̂�1Z>

�
Ĝ�̂ + ĝ

�

OLS - ordinary least squares, GLS - generalized least squares, 2SLS - two stage least squares,

3SLS - three stage least squares, MLE exp - maximum likelihood of an exponential family

distribution, NLS - nonlinear least squares, NLS ⌃ - nonlinear least squares with heteroskedas-

tic or autocorrelated errors, lin GMM - linear generalized method of moments, NL GMM -

nonlinear generalized method of moments.
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