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OVERVIEW

▸ Our goal: turn a dataset into a probability density function  

▸ The PDF should be smooth 

▸ The method should work for many variables / dimensions 

▸ We use density estimation trees and smooth them 

▸ We call this a kudzu density function 

▸ This performs quite well 

▸ Thanks: Gordon Hunter, Lucio Morettini
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DENSITY ESTIMATION

▸ Typically, either parametric or not extensible to several 
dimensions (p) 

▸ Non-parametric estimation:  

▸ kernels distort massively as p>4 

▸ newer methods are better, but computationally intensive 
(i.e. bad for the planet), and forbidding to most users
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MOTIVATION

▸ Density estimation is useful for probabilistic prediction, 
visualisation, simulation, etc.  

▸ My motivation was Bayesian updating: 

▸ Model fitted on data X1, giving a posterior sample from P(θ | X1).  

▸ Now data X2 arrives. Re-analysis of (X1, X2) will take too long.  

▸ Use X1's posterior P(θ | X1) as the prior, and compute likelihood 
only on X2. No guarantee of a convex, unimodal p[oste]rior, so 
we need a non-parametric method. p could be large.
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CORE IDEA

▸ Fit a density estimation tree (DET; 
Ram & Gray 2011) and smooth it.  

▸ This produces a kudzu density 
function, named after a vine (a.k.a. 
Japanese arrowroot) which grows 
rapidly over trees, smoothing out 
their shape.
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DENSITY ESTIMATION TREES

▸ Proposed by Ram & Gray (2011) with little subsequent uptake.  

▸ CART algorithm, but using integrated squared error (ISE), which controls 
over-fitting to some extent (and smoothing helps too). 

▸ Trees scale well to high n and high p (compute time and accuracy).  

▸ Terminal nodes of the tree are L "leaves". The tree is defined by two L-by-p 
matrices (top and bottom edges) and a L-vector of densities.  

▸ ISE collapses to an extremely simple formula for DETs. 

▸ (Technical aside: The volume of the leaf is important in DET, so the p 
variables/unknowns must jointly define a metric space: no ordinal or nominal 
variables, though integers are fine.)
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KUDZU DENSITY FUNCTION (1)

▸ We replace each edge of each leaf with a 
smooth ramp (monotonic, two horizontal 
asymptotes).  

▸ They are centred on the edges, and have 
bandwidth σ. Inverse logistic function is in 
the class of computationally minimal 
smooth ramps (one power series). 

▸ (Technical aside: you can also conceive of it 
as a convolution of each leaf-dimension 
with the logistic PDF.)
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KUDZU DENSITY FUNCTION (2)

▸ Each dimension of each 
leaf is the product of the 
top and bottom ramps, 
and the predicted DET 
density 

▸ Each leaf is the product 
of these p dimensions 
(which are orthogonal 
and independent)
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KUDZU DENSITY FUNCTION (3)

▸ The whole tree is the sum 
of the leaves 

▸ But it might not integrate 
to one, so can optionally 
be normalised by 
dividing by the definite 
integral out to ±ϕσ 
(beyond which it is 
negligible).  

▸ When we integrate, we 
store all the leaf integrals 
and leaf-dimension 
integrals.
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KUDZU DENSITY FUNCTION (4)
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PERFORMANCE

▸ DET fit time is O(L) and O(p). Density evaluation is very 
fast. We only evaluate neighbouring leaves and use stored 
integral components for marginalisation.
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NOT AS MANY DIMENSIONS AS YOU THOUGHT

▸ p dimensions will, in practice, be broken into:  

▸ those that are uncorrelated with anything else (just use 
univariate density) 

▸ mutually correlated blocks 

▸ blocks that can be linearly transformed to uncorrelated, 
convex distributions can be dealt with as univariate 

▸ multimodal distributions can be dealt with mode by mode 

▸ but those that are not convex require kudzu
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ENSEMBLES
▸ Trees struggle with shapes that cannot line up with the axes. 

▸ Ensembles of kudzu density functions are promising, and 
we have implemented bagging.
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STATA / MATA IMPLEMENTATION

▸ Sharing for alpha testing by September: Mata functions and Stata .ado 

▸ Tree command kudzu_det for density (ISE). 

▸ (Technical aside: tree functions are extendable to classification and 
regression in future, or any loss function that is made out of sums of xi.)  

▸ Structs for DET and kudzu, return in r(), command to save to / load from .dta.  

▸ Density evaluation at p-vector. Missing elements mean to marginalise that 
dimension. kudzu_density, kudzufile(filename) at(numlist) 

▸ Very fast pseudo-RNG from kudzu density by reflection around edge.    
rkudzu, kudzufile(filename) n(#) 

▸ Export BUGS/JAGS, Stan and bayesmh evaluator code for p[oste]rior.
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POTENTIAL FUTURE WORK

▸ auto-setting σ 

▸ including fast approximations to kudzu ISE 

▸ more ensembles
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FIND OUT MORE

▸ Thank you for listening 

▸ References: 

▸ P Ram & A Gray (2011). "Density estimation trees", KDD '11: Proceedings of the 17th 
ACM SIGKDD international conference on knowledge discovery and data mining. pp. 
627–635. 

▸ CART: see Breiman et al book (1984) 

▸ DW Scott (2015). "Multivariate density estimation: theory, practice, and visualization." 
Wiley.  

▸ robert@bayescamp.com   

▸ (By the way, I'm job hunting for 2025.)


