SCALABLE HIGH-DIMENSIONAL NON-PARAMETRIC DENSITY ESTIMATION, WITH BAYESIAN APPLICATIONS

ROBERT GRANT — BAYESCAMP & KINGSTON UNIVERSITY, UK

OVERVIEW

- Our goal: turn a dataset into a probability density function
- The PDF should be smooth
- The method should work for many variables / dimensions
- We use density estimation trees and smooth them
- We call this a kudzu density function
- This performs quite well

Thanks: Gordon Hunter, Lucio Morettini

DENSITY ESTIMATION

- Typically, either parametric or not extensible to several dimensions (p)
- Non-parametric estimation:
 - kernels distort massively as p>4
 - newer methods are better, but computationally intensive (i.e. bad for the planet), and forbidding to most users

MOTIVATION

- Density estimation is useful for probabilistic prediction, visualisation, simulation, etc.
- My motivation was Bayesian updating:
 - Model fitted on data X_1 , giving a posterior sample from P($\theta \mid X_1$).
 - Now data X_2 arrives. Re-analysis of (X_1, X_2) will take too long.
 - Use X₁'s posterior P(θ | X₁) as the prior, and compute likelihood only on X₂. No guarantee of a convex, unimodal p[oste]rior, so we need a non-parametric method. *p* could be large.

CORE IDEA

- Fit a density estimation tree (DET; Ram & Gray 2011) and smooth it.
- This produces a kudzu density function, named after a vine (a.k.a. Japanese arrowroot) which grows rapidly over trees, smoothing out their shape.

DENSITY ESTIMATION TREES

- Proposed by Ram & Gray (2011) with little subsequent uptake.
- CART algorithm, but using integrated squared error (ISE), which controls over-fitting to some extent (and smoothing helps too).
- Trees scale well to high n and high p (compute time and accuracy).
- Terminal nodes of the tree are L "leaves". The tree is defined by two L-by-p matrices (top and bottom edges) and a L-vector of densities.
- ▶ ISE collapses to an extremely simple formula for DETs.

(Technical aside: The volume of the leaf is important in DET, so the p variables/unknowns must jointly define a metric space: no ordinal or nominal variables, though integers are fine.)

KUDZU DENSITY FUNCTION (1)

- We replace each edge of each leaf with a smooth ramp (monotonic, two horizontal asymptotes).
- They are centred on the edges, and have bandwidth σ. Inverse logistic function is in the class of computationally minimal smooth ramps (one power series).

(Technical aside: you can also conceive of it as a convolution of each leaf-dimension with the logistic PDF.)

KUDZU DENSITY FUNCTION (2)

Each dimension of each leaf is the product of the top and bottom ramps, and the predicted DET density

$$\hat{f}_{\text{kudzu}}(x_j|\ell) \propto \hat{f}_{\text{DET}}(x_j|\ell) \left(\frac{1}{1+e^{\frac{\mu_{b\ell j}-x_j}{\sigma}}}\right) \left(\frac{1}{1+e^{\frac{x_j-\mu_{t\ell j}}{\sigma}}}\right)$$

Each leaf is the product of these p dimensions (which are orthogonal and independent)

$$\hat{f}_{\text{kudzu}}(\boldsymbol{x}|\ell) \propto \hat{f}_{\text{DET}}(\boldsymbol{x}|\ell) \prod_{j=1}^{p} \left(\frac{1}{1+e^{\frac{\mu_{b\ell j}-x_{j}}{\sigma}}}\right) \left(\frac{1}{1+e^{\frac{x_{j}-\mu_{t\ell j}}{\sigma}}}\right)$$

KUDZU DENSITY FUNCTION (3)

- The whole tree is the sum of the leaves
- But it might not integrate to one, so can optionally be normalised by dividing by the definite integral out to ±\$\overlines\$ (beyond which it is negligible).
- When we integrate, we store all the leaf integrals and leaf-dimension integrals.

$$\hat{f}_{\text{kudzu}}(\boldsymbol{x}) \propto \sum_{\ell=1}^{L} \hat{f}_{\text{DET}}(\boldsymbol{x}|\ell) \prod_{j=1}^{p} \left(\frac{1}{1+e^{\frac{\mu_{b\ell j}-x_{j}}{\sigma}}} \right) \left(\frac{1}{1+e^{\frac{x_{j}-\mu_{t\ell j}}{\sigma}}} \right)$$

$$\hat{f}_{\text{kudzu}}(\boldsymbol{x}) = \frac{\sum_{\ell=1}^{L} \hat{f}_{\text{DET}}(\boldsymbol{x}|\ell) \prod_{j=1}^{p} \left(\frac{1}{1+e^{\frac{\mu_{b\ell j}-x_{j}}{\sigma}}}\right) \left(\frac{1}{1+e^{\frac{x_{j}-\mu_{t\ell j}}{\sigma}}}\right)}{\sum_{\ell=1}^{L} \hat{f}_{\text{DET}}(\boldsymbol{x}|\ell) \prod_{j=1}^{p} \sigma \frac{e^{u_{\ell j}}}{e^{u_{\ell j}}-1} \ln\left(\frac{e^{u_{\ell j}+\phi}+e^{-(u_{\ell j}+\phi)}+2}{e^{\phi}+e^{-\phi}+2}\right)}$$

ROBERT GRANT, STATA CONFERENCE 2024

KUDZU DENSITY FUNCTION (4)

sum of L leaves = kudzu density

PERFORMANCE

DET fit time is O(L) and O(p). Density evaluation is very fast. We only evaluate neighbouring leaves and use stored integral components for marginalisation.

NOT AS MANY DIMENSIONS AS YOU THOUGHT

- p dimensions will, in practice, be broken into:
 - those that are uncorrelated with anything else (just use univariate density)
 - mutually correlated blocks
 - blocks that can be linearly transformed to uncorrelated, convex distributions can be dealt with as univariate
 - multimodal distributions can be dealt with mode by mode
 - but those that are not convex require kudzu

ENSEMBLES

- Trees struggle with shapes that cannot line up with the axes.
- Ensembles of kudzu density functions are promising, and we have implemented bagging.

STATA / MATA IMPLEMENTATION

- Sharing for alpha testing by September: Mata functions and Stata .ado
- Tree command kudzu_det for density (ISE).

(Technical aside: tree functions are extendable to classification and regression in future, or any loss function that is made out of sums of xⁱ.)

- Structs for DET and kudzu, return in r(), command to save to / load from .dta.
- Density evaluation at p-vector. Missing elements mean to marginalise that dimension. kudzu_density, kudzufile(filename) at(numlist)
- Very fast pseudo-RNG from kudzu density by reflection around edge. rkudzu, kudzufile(filename) n(#)
- Export BUGS/JAGS, Stan and bayesmh evaluator code for p[oste]rior.

POTENTIAL FUTURE WORK

- auto-setting σ
 - including fast approximations to kudzu ISE
- more ensembles

ROBERT GRANT, STATA CONFERENCE 2024

FIND OUT MORE

- Thank you for listening
- References:

- P Ram & A Gray (2011). "Density estimation trees", KDD '11: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. pp. 627-635.
- CART: see Breiman et al book (1984)
- DW Scott (2015). "Multivariate density estimation: theory, practice, and visualization." Wiley.
- robert@bayescamp.com
- (By the way, I'm job hunting for 2025.)

