

# Stata Conference Portland 2024

# Estimating a Probit Model with a continuous endogenous covariate and using complex survey data: an application to socioeconomic mobility analysis in Mexico.

August 1-2, 2024

Sylvia Beatriz Guillermo Peón

Benemérita Universidad Autónoma de Puebla Alejandro Miguel Castañeda Valencia

Benemérita Universidad Autónoma de Puebla Juan Enrique Huerta Wong

Vocería de la Presidencia de la República



➤To estimate the probability of an individual's destination being at a high socioeconomic level as a function of a set of explanatory variables.

A high socioeconomic level is defined as being located at the top tertile of the economic resources index distribution.

➢Given the endogeneity of the education variable, the probability function is estimated using a Probit model with an instrumental variable under the context of a complex survey data set.



# **Research Objectives**

- We analyze the influence of higher education and parental socioeconomic status on the offspring's probability of a high socioeconomic destination in three residence areas of Mexico: South Region, Mexico City and Nuevo Leon. These are Mexico's three most referenced and contrasting geographical areas regarding inequality of opportunities, poverty, and development.
  - Nuevo Leon and Mexico City (CEEY, 2019c; CEEY, 2023) are the two federal entities reported with the highest opportunities for social mobility, more extensive possibilities of social ascension, and hence larger opportunities of poverty overcoming.
  - Southern region states are the ones reported with the lowest degree of upward social mobility



# Data

We use data from the **two latest surveys conducted by the Center of Studies Espinosa Yglesias** (CEEY)

#### ≻ The 2017 ESRU Survey on Social Mobility in Mexico (ESRU-EMOVI-2017)

This national survey provides current and retrospective information on the interviewees' characteristics and their parents; it has statistical representation for women and men at the regional level, including five regions in Mexico: North, Northwest, Center-North, Center, and South. Additionally, within the Center region, the sampling design includes a Mexico City representative sample.

#### > The 2021 ESRU Survey on Social Mobility in Nuevo Leon (ESRU-EMOVI Nuevo Leon 2021)

The data for the South region and Mexico City are merged with the EMOVI-Nuevo Leon to construct a database considering the complex sampling design characteristics of the two surveys (primary sampling units, strata and expansion factors).



#### 1) Measuring Socioeconomic Level

➤ We estimate two indexes of total economic resources to measure parental and informants' socioeconomic levels.

➤ The indexes are divided into tertiles so that parental and offspring socioeconomic levels are defined by their corresponding tertile of the economic resources indexes distribution.

➢ Indexes are estimated using multiple correspondence analysis on a matrix of categorical variables expressing the individual's asset holdings.



# 2) The Structural Model

The dependent variable:

- $hd_i^*$  = high destination; is a continuous and unobserved (latent) variable representing the individual's propensity to be located in the top socioeconomic stratum.
- $hd_i$  = tertile of the socioeconomic (total economic resources) index distribution in which each interviewee (offspring) is located and takes on two values:

 $hd_i = 1$  if the interviewee's current hierarchical position in the socioeconomic structure is in the third (top) tertile and  $hd_i = 0$  otherwise.

And the relationship between the observed (binary) and unobserved (continuous) variables is:

 $hd_{i} = \begin{cases} 1 & if \ hd_{i}^{*} > 0 \ propensity \ of \ destination \ at \ the \ high \ socioeconomic \ strata \\ 0 & if \ hd_{i}^{*} \le 0 \ propensity \ of \ destination \ at \ the \ non \ -high \ socioeconomic \ strata \end{cases}$ (1)



Under the previous definition, the model can be formally expressed as:

$$hd_i^* = x_i \boldsymbol{\beta} + \gamma e duc_i + e_i \qquad (2)$$

$$educ_i = x_i \alpha + z_i \theta + u_i$$
 (3)

Where:

 $x_i$  = raw vector of K exogenous explanatory variables for the interviewed individual i

 $educ_i$  = individual *i*'s years of schooling (endogenous variable)

 $\boldsymbol{\beta}$  = column vector of K structural parameters associated with the exogenous explanatory variables

- $\gamma$  = the structural parameter associated with years of schooling
- $z_i$  is a raw vector of L=3 external instruments (instrumental variables)
- $\alpha$  and  $\theta$  are the  $K \times 1$  and  $L \times 1$  vectors of the reduced form parameters
- $e_i$  and  $u_i$  are the standard normal distributed structural error and reduced form error terms, respectively.



The likelihood function is derived considering that the joint density  $f(hd_i, educ_i | \mathbf{x}_i, \mathbf{z}_i)$  can be written as (Wooldridge, 2010: p. 476; Stata 17: p. 1142):

$$f(hd_i, educ_i | \mathbf{x}_i, \mathbf{z}_i) = f(hd_i | educ_i, \mathbf{x}_i, \mathbf{z}_i) \times f(educ_i | \mathbf{x}_i, \mathbf{z}_i)$$
(4)

Therefore, the log likelihood function is expressed as:

$$\ln L = \sum_{i=1}^{N} w_i \left\{ hd_i \ln \Phi(m_i) + (1 - hd_i) \ln[1 - \Phi(m_i)] + \ln \phi \left( \frac{educ_i - x_i \alpha - z_i \theta}{\sigma} \right) - \ln \sigma \right\}$$
(5)

where

$$m_i = \frac{x_i \boldsymbol{\beta} + \gamma e duc_i + \rho (e duc_i - x_i \boldsymbol{\alpha} - z_i \boldsymbol{\theta}) / \sigma}{(1 - \rho^2)^{1/2}}$$



Facultad de Economía

The probability of a destination at a high socioeconomic level for an individual as a function of a set of explanatory variables can be expressed as (Wooldridge, 2010: p. 476):

$$P(hd_i = 1 | \mathbf{x}_i, educ_i) = \Phi\left[\frac{\mathbf{x}_i \boldsymbol{\beta} + \gamma educ_i + \rho(educ_i - \mathbf{x}_i \boldsymbol{\alpha} - \mathbf{z}_i \boldsymbol{\theta})/\sigma}{(1 - \rho^2)^{1/2}}\right]$$
(7)



#### 3) IV Probit or Standard Probit?

In order to choose the appropriate estimation method, we must test if the variable *educ* is endogenous in the model. That is, we need to test:

 $\rho = \operatorname{Corr} (educ_i, e_i) = 0 \rightarrow educ$  is exogenous  $\rightarrow$  Standard Probit

This is a Wald exogeneity test.

The STATA *ivprobit* command **used with Survey Data Analysis** does not provide the Wald exogeneity test (it does so but only for the *ivprobit* without considering the survey design).

To obtain the Wald's test statistic, we estimate the model using STATA *ivprobit* command (also using the conditional maximum-likelihood estimator) and **using the expansion factors as sampling weights as well as clustered robust standard errors**, where the cluster variable is the primary sampling unit (Long and Freese, 2014). Point estimates and their standard errors have exactly the same values as those obtained with *ivprobit* under the survey data analysis setup.



|            | ivprobit                                | ivprobit_svy   |
|------------|-----------------------------------------|----------------|
| educ_y     | .2076758 **                             | * .2076758 *** |
|            | (.017296)                               | (.0173042)     |
| Sex        |                                         |                |
| female     | 0295701                                 | 0295701        |
|            | (.0566901)                              | (.0563435)     |
| age        | .0435869 **                             | .0435869 **    |
| -          | (.0175668)                              | (.0174567)     |
| age # age  | 0002026                                 | 0002026        |
|            | (.0002037)                              | (.0002027)     |
| sec_origin |                                         |                |
| medium     | .2532842 **                             | * .2532842 *** |
|            | (.0969488)                              | (.0962878)     |
| high       | .6978133 **                             | * .6978133 *** |
|            | (.1385345)                              | (.1385158)     |
| skin_tone  |                                         |                |
| dark       | 1478777 **                              | 1478777 **     |
|            | (.0673965)                              | (.0673212)     |
| area       | , , , , , , , , , , , , , , , , , , , , |                |
| rural      | 082247                                  | 082247         |
|            | (.0881862)                              | (.0883836)     |

Based on Long & Freese (2014) estimation procedure we get the Walt Test of exogeneity with STATA ivprobit command

| <pre>corr(e.educ_y,e.hd)</pre> | -0.3462 | 0.0648 |  |
|--------------------------------|---------|--------|--|
| <pre>sd(e.educ_y)</pre>        | 3.4510  | 0.0519 |  |

Wald test of exogeneity (corr = 0): chi2(1) = 24.04

Instrumented: educ\_y

Instruments: 1.sex age c.age#c.age 2.sec\_origin 3.sec 2.region 3.region educ\_yho overcrowding\_



**BUAP**.

#### 4) Testing Instruments' strength

Given that the model has only one endogenous covariate, we only need one strong instrument. The test for instruments' strength is simply a joint significance test after the *ivprobit* command with survey analysis:

```
. test educ_yho overcrowding_ho 1.floor_ho
```

```
Adjusted Wald test
```

```
( 1) [educ_y]educ_yho = 0
( 2) [educ_y]overcrowding_ho = 0
( 3) [educ_y]1.floor_ho = 0
```

```
F(3, 1047) = 106.48
Prob > F = 0.0000
```



At least one instrument is strong



### 5) Overidentification test for the exogeneity of instruments

≻ No STATA command is available to test the exogeneity of instruments (instruments' validity test).

➢ When estimating discrete choice models, testing instruments exogeneity is somehow more difficult because the error term of the model is latent (not observed); so we performed **the Refutability Test**, developed by Angelo Guevara (2018).

 $\succ$  This test states that:

Under Ho, all instruments are exogenous (valid)

Under H1, at least one instrument is endogenous



#### Stage 1:

Estimate the reduced form equation for the endogenous variable (educ) by OLS and obtain the residuals.

$$educ_i = x_i \alpha + z_i \theta + u_i \rightarrow \hat{u}_i$$

#### Stage 2:

Estimate the structural equation, including the residuals from Stage 1 as an auxiliary variable to control for the endogeneity, and retrieve the log-likelihood of this restricted **Control Function**  $L_R^{CF}$ .

$$hd_i^* = \mathbf{x}_i \boldsymbol{\beta} + \gamma educ_i + \delta \hat{u}_i + v_i \rightarrow L_R^{CF}$$

#### Stage 3:

Estimate the structural model again, including now not only  $\hat{u}_i$ , but also L - 1 (two) of the instruments as additional variables, and retrieve the log-likelihood of this unrestricted Control Function  $L_U^{CF}$ .

$$hd_i^* = \mathbf{x}_i \mathbf{\beta} + \gamma educ_i + \delta \hat{u}_i + \alpha_1 z_{1i} + \alpha_2 z_{2i} + v_i \quad \Rightarrow L_U^{CF}$$



**The test statistic of the Refutability test** is calculated as a **likelihood ratio test** in which the model estimated in Stage 2 is the restricted version of the model estimated in Stage 3:

$$LR = -2(L_U^{CF} - L_R^{CF}) \sim \chi^2_{(L-1)}$$

. lrtest probitu1 probitr, force

Likelihood-ratio test Assumption: probitr nested within probitu1

LR chi2(2) = 2.03 Prob > chi2 = 0.3626



Cannot reject Ho: All instruments are exogenous



. svy linearized : ivprobit hd i.sex age c.age#c.age i.sec\_origin i.skin\_tone i.area b1.region (educ\_y= > educ\_yho overcrowding\_ho i.floor\_ho), cformat(%5.4f) pformat(%5.3f) sformat(%5.3f) (running ivprobit on estimation sample)

Survey: Probit model with endogenous regressors

| Number of strata =<br>Number of PSUs = 1 | 19<br>,068                 |            | Num<br>Pop<br>Des<br>F(1<br>Pro | ber of obs<br>ulation si<br>ign df<br>0, 1040)<br>b > F | s = 8,<br>ize = 22,279.<br>= 1,<br>= 100<br>= 0.0 | ,465<br>.071<br>,049<br>0.03<br>0000 | educ_y<br>sex<br>female<br>age | -0.7516<br>0.0364 | 0.1259<br>0.0461 | -5.968<br>0.788 | 0.000<br>0.431 | -0.9987<br>-0.0542 | -0.5045<br>0.1269 |
|------------------------------------------|----------------------------|------------|---------------------------------|---------------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------|-------------------|------------------|-----------------|----------------|--------------------|-------------------|
|                                          |                            |            |                                 |                                                         |                                                   |                                      | c.age#c.age                    | -0.0012           | 0.0005           | -2.250          | 0.025          | -0.0022            | -0.0002           |
|                                          | <b>C C C C C C C C C C</b> | Linearized |                                 | <b>D</b>                                                |                                                   |                                      | sec onigin                     |                   |                  |                 |                |                    |                   |
|                                          | Coefficient                | sta. err.  | τ                               | P> t                                                    | [95% CONT.                                        | . intervalj                          | medium                         | 0 8222            | 0 2089           | 3 935           | 9 999          | 0 4122             | 1 2321            |
| hd                                       |                            |            |                                 |                                                         |                                                   |                                      | high                           | 2.1481            | 0.3012           | 7,131           | 0.000          | 1.5570             | 2.7392            |
| nu<br>educ v                             | 0 2077                     | 0 0173     | 12 001                          | 0 000                                                   | 0 1737                                            | 0 2416                               | 8                              |                   | 000000           |                 |                |                    |                   |
| cuuc_y                                   | 0.2077                     | 0.01/5     | 12.001                          | 0.000                                                   | 0.1/5/                                            | 0.2410                               | skin tone                      |                   |                  |                 |                |                    |                   |
| sex                                      |                            |            |                                 |                                                         |                                                   |                                      | dark                           | -0.6066           | 0.1376           | -4.410          | 0.000          | -0.8766            | -0.3367           |
| female                                   | -0.0296                    | 0.0563     | -0.525                          | 0.600                                                   | -0.1401                                           | 0.0810                               |                                |                   |                  |                 |                |                    |                   |
| age                                      | 0.0436                     | 0.0175     | 2.497                           | 0.013                                                   | 0.0093                                            | 0.0778                               | area                           |                   |                  |                 |                |                    |                   |
|                                          |                            |            |                                 |                                                         |                                                   |                                      | rural                          | -0.5673           | 0.1957           | -2.899          | 0.004          | -0.9514            | -0.1833           |
| c.age#c.age                              | -0.0002                    | 0.0002     | -1.000                          | 0.318                                                   | -0.0006                                           | 0.0002                               |                                |                   |                  |                 |                |                    |                   |
|                                          |                            |            |                                 |                                                         |                                                   |                                      | region                         |                   |                  |                 |                |                    |                   |
| sec_origin                               |                            |            |                                 |                                                         |                                                   |                                      | Mexico City                    | -0.3199           | 0.1962           | -1.631          | 0.103          | -0.7049            | 0.0651            |
| medium                                   | 0.2533                     | 0.0963     | 2.630                           | 0.009                                                   | 0.0643                                            | 0.4422                               | Nuevo Leon                     | -0.8060           | 0.21//           | -3.702          | 0.000          | -1.2333            | -0.3788           |
| high                                     | 0.6978                     | 0.1385     | 5.038                           | 0.000                                                   | 0.4260                                            | 0.9696                               |                                | 0, 2000           | 0 0170           | 16 000          | 0.000          | 0.0570             | 0 2240            |
|                                          |                            |            |                                 |                                                         |                                                   |                                      | educ_yno                       | 0.2909            | 0.01/3           | 16.829          | 0.000          | 0.2570             | 0.3248            |
| skin_tone                                |                            | 0.0670     |                                 |                                                         |                                                   | 0.0450                               | 1 floor bo                     | -0.0094           | 0.0202           | -5.170          | 0.002          | -0.1447            | -0.0541           |
| dark                                     | -0.1479                    | 0.06/3     | -2,197                          | 0.028                                                   | -0.2800                                           | -0.0158                              | 1.11001_110                    | 10 0287           | 0.2225           | 10.225          | 0.000          | 8 1455             | 11 9118           |
| 2002                                     |                            |            |                                 |                                                         |                                                   |                                      |                                | 10.0207           | 0.5557           | 10.450          | 0.000          | 0.1455             |                   |
| area                                     | -0 0822                    | 0 0884     | -0 031                          | 0 352                                                   | -0 2557                                           | 0 0012                               | /athrho2 1                     | -0.3611           | 0.0737           | -4.897          | 0.000          | -0.5058            | -0.2164           |
| Turat                                    | -0.0022                    | 0.0884     | -0.931                          | 0.352                                                   | -0.2337                                           | 0.0912                               | /lnsigma2                      | 1.2387            | 0.0149           | 83.038          | 0.000          | 1.2094             | 1.2679            |
| region                                   |                            |            |                                 |                                                         |                                                   |                                      |                                |                   |                  |                 |                |                    |                   |
| Mexico City                              | 0.7176                     | 0.0742     | 9.675                           | 0.000                                                   | 0.5720                                            | 0.8631                               | <pre>corr(e.educ_y,e.hd)</pre> | -0.3462           | 0.0649           |                 |                | -0.4666            | -0.2131           |
| Nuevo Leon                               | 0.9807                     | 0.0866     | 11.321                          | 0.000                                                   | 0.8107                                            | 1.1506                               | sd(e.educ_y)                   | 3.4510            | 0.0515           |                 |                | 3.3515             | 3.5535            |
| _cons                                    | -4.5574                    | 0.4129     | -11.037                         | 0.000                                                   | -5.3676                                           | -3.7471                              | Instrumented: educ_y           |                   | e 2 sec or       | igin 3 se       | c origin 1     | skin tone 1        | area              |

## 6) Estimating Average Marginal Effects

Average marginal effects

Number of strata = 19 Number of PSUs = 1,068 Model VCE: Linearized Number of obs=8,465Population size=22,279.071Design df=1,049

Expression: Average structural function probabilities, predict(pr)
dy/dx wrt: educ\_y 1.sex age 2.sec\_origin 3.sec\_origin 1.skin\_tone 1.area 2.region 3.region

|             | dy/dx    | Delta-method<br>std. err. | t     | P> t  | [95% conf. | interval] |
|-------------|----------|---------------------------|-------|-------|------------|-----------|
| educ_y      | .0470281 | .0045422                  | 10.35 | 0.000 | .0381153   | .0559408  |
| sex         |          |                           |       |       |            |           |
| female      | 0067013  | .0127602                  | -0.53 | 0.600 | 0317397    | .0183371  |
| age         | .0061183 | .0008608                  | 7.11  | 0.000 | .0044292   | .0078075  |
| sec_origin  |          |                           |       |       |            |           |
| medium      | .0612959 | .0226895                  | 2.70  | 0.007 | .0167738   | .1058179  |
| high        | .1825759 | .0363959                  | 5.02  | 0.000 | .1111589   | .253993   |
| skin_tone   |          |                           |       |       |            |           |
| dark        | 0338293  | .015444                   | -2.19 | 0.029 | 064134     | 0035245   |
| area        |          |                           |       |       |            |           |
| rural       | 0187855  | .0201318                  | -0.93 | 0.351 | 0582887    | .0207177  |
| region      |          |                           |       |       |            |           |
| Mexico City | .1882577 | .0206496                  | 9.12  | 0.000 | .1477384   | .2287769  |
| Nuevo Leon  | .2649556 | .0255709                  | 10.36 | 0.000 | .2147796   | .3151316  |

Note: dy/dx for factor levels is the discrete change from the base level.

## 7) Computing the percentage of Correctly Classified outcomes

STATA does not provide a function to obtain the percentage of correctly classified outcomes under the Survey Data Analysis framework, and if we use the *pweights* option (as we do with the Long & Freese procedure) the *estat classification* command is not allowed.

#### **Our proposal**

#### Step 1

Obtain the estimated probabilities after estimating the *ivprobit* model with **SVY**, predict prhat, pr

#### Step 2

Define the estimated 0, 1 outcomes based on the estimated probabilities

gen hd\_hat=(prhat>=0.5)



Step 3

Generate a variable (correct) taking on value 1 iff predicted outcome = observed outcome and 0 otherwise

gen correct=(hd\_hat==hd)

#### **Step 4** Tabulate

tab correct

| Cum.   | Percent | Freq. | correct |
|--------|---------|-------|---------|
| 24.32  | 24.32   | 2,059 | 0       |
| 100.00 | 75.68   | 6,406 | 1       |
|        | 100.00  | 8,465 | Total   |



Probalility of high SE destination by SE origin, educational level and region with 95% CIs  $\overline{}$ Average structural function probabilities  $\infty$ ပ 4  $\sim$ 0 No studies Incomplete primary school Primary school Middle school High school College/Gradua Low Origin, South Low Origin, Mexico City Low Origin, Nuevo Leon -----0-----Medium Origin, South ★ Medium Origin, Mexico City Medium Origin, Nuevo Leon  $\star$  $\mathbf{X}$ High Origin, South + High Origin, Mexico City + High Origin, Nuevo Leon -

8) Comparing probabilities of high Socioeconomic destination by SE origin, educational level and region

#### 9) Estimating Odds Ratios

Social Reproduction matters: The probability premium of higher education by socioeconomic origin

We computed some odds ratios to analyze how the probability premium of higher education changes by socioeconomic origin

 $\overline{P}(hd_i = 1 | \mathbf{x}_i, educ_i, sec\_origin_i, region_i)$   $\overline{P}(hd_i = 1 | \mathbf{x}_i, educ_i = high \ shool, sec\_origin_i, region_i)$ 

We did these calculations using the margins postestimation functions



. margins sec\_origin#region, by(educ) predict(pr) cformat(%5.3f) pformat(%5.2f) sformat(%5.2f) post

Predictive margins

| Number  | of   | strata | =   | 19    | Number of obs =   | 8,465      |
|---------|------|--------|-----|-------|-------------------|------------|
| Number  | of   | PSUs   | =   | 1,068 | Population size = | 22,279.071 |
| Model \ | /CE: | Linear | riz | ed    | Design df =       | 1,049      |

Expression: Average structural function probabilities, predict(pr)
Over: educ

|                                                | Margin | Delta-method<br>std. err. | t    | P> t | [95% conf. | interval] |
|------------------------------------------------|--------|---------------------------|------|------|------------|-----------|
| educ#sec_origin#region<br>No studies#low#South | 0.006  | 0.002                     | 2.70 | 0.01 | 0.002      | 0.010     |
| No studies#low#Mexico City                     | 0.036  | 0.011                     | 3.32 | 0.00 | 0.015      | 0.058     |
| No studies#low#Nuevo Leon                      | 0.064  | 0.017                     | 3.66 | 0.00 | 0.030      | 0.098     |





#### 9) Odds Ratios

probability premium of higher education by socioeconomic origin

 $\overline{P}(hd_i = 1 | x_i, educ_i, sec_{origin_i}, region_i)$ 

 $\overline{P}(hd_i = 1 | x_i, educ_i = high shool, sec_origin_i, region_i)$ 



#### 9) Odds Ratios

probability premium of higher education by socioeconomic origin

 $\overline{P}(hd_i = 1 | x_i, educ_i, sec_{origin_i}, region_i)$ 

 $\overline{P}(hd_i = 1 | x_i, educ_i = high shool, sec_origin_i, region_i)$ 



#### 9) Odds Ratios

probability premium of higher education by socioeconomic origin

 $\overline{P}(hd_i = 1 | x_i, educ_i, sec_{origin_i}, region_i)$ 

 $\overline{\mathbf{P}}(hd_i = 1 | \mathbf{x}_i, educ_i = high shool, sec_origin_i, region_i)$ 

| Socioeconomic<br>Stratum of origin | Educational level         | High school, Low<br>origin | High school,<br>Medium origin | High school, High origin | South Region                                                         |
|------------------------------------|---------------------------|----------------------------|-------------------------------|--------------------------|----------------------------------------------------------------------|
| Low                                |                           |                            |                               |                          |                                                                      |
|                                    | No studies                | 0.03 ***                   | 0.02 ***                      | 0.01 ***                 | Odds Ratio Test                                                      |
|                                    | Incomplete primary school | 0.09 ***                   | 0.06 ***                      | 0.04 ***                 |                                                                      |
|                                    | Primary school            | 0.21 ***                   | 0.15 ***                      | 0.09 ***                 |                                                                      |
|                                    | Middle school             | 0.48 ***                   | 0.34 ***                      | 0.21 ***                 | Testing Odds=1                                                       |
|                                    | High school               | 1.00                       | 0.71 ***                      | 0.44 ***                 |                                                                      |
|                                    | College/Graduate          | 2.07 ***                   | 1.48 ***                      | 0.92                     | b[6.educ#1.sec_origin#1.region]/ b[5.educ#1.sec_origin#1.region] = 1 |
| Medium                             |                           |                            |                               | (1)                      | bl6 educ#1 sec_origin#1 region]/ bl5 educ#1 sec_origin#1 region] = 1 |
|                                    | No studies                | 0.06 ***                   | 0.05 ***                      | 0.03 **                  |                                                                      |
|                                    | Incomplete primary school | 0.16 ***                   | 0.11 ***                      | 0.07 **                  | cn12(1) = 105.61<br>Prob > ch12 = 0.0000                             |
|                                    | Primary school            | 0.35 ***                   | 0.25 ***                      | 0.16 **                  |                                                                      |
|                                    | Middle school             | 0.74 **                    | 0.53 ***                      | 0.33 **                  |                                                                      |
|                                    | High school               | 1.40 **                    | 1.00                          | 0.62 ***                 |                                                                      |
|                                    | College/Graduate          | 2.60 ***                   | 1.85 ***                      | 1.15                     |                                                                      |
| High                               |                           |                            |                               |                          |                                                                      |
|                                    | No studies                | 0.19 ***                   | 0.13 ***                      | 0.08 ***                 |                                                                      |
|                                    | Incomplete primary school | 0.41 ***                   | 0.29 ***                      | 0.18 ***                 |                                                                      |
|                                    | Primary school            | 0.76                       | 0.55 ***                      | 0.34 ***                 |                                                                      |
|                                    | Middle school             | 1.39                       | 0.99                          | 0.62 ***                 |                                                                      |
|                                    | High school               | 2.25 ***                   | 1.61 ***                      | 1.00                     |                                                                      |
|                                    | College/Graduate          | 3.52 ***                   | 2.51 ***                      | 1.56 ***                 |                                                                      |

# 10) Testing the Lucky High Schooler Hypothesis

"Individuals with no more than high school education (the *lucky high schooler*) have the same probability of a high destination in the socioeconomic distribution compared to those who have attained a university educational level."

Using estimated average probabilities (STATA margins functions), we were able to test if

$$H_0: P(hd_i = 1 | x_i, educ_i = college/graduate) - P(hd_i = 1 | x_i, educ_i = high school) = 0$$
. test 6.educ=5.educ
Adjusted Wald test
(1) - 5bn.educ + 6.educ = 0

F( 1, 1049) = 496.12 Prob > F = 0.0000



# **Challenges found**

≻Wald exogeneity test for Survey Data Analysis

> Test of Instruments' strength (particularly if there is more than one endogenous covariate)

>Overidentification test for the exogeneity of instruments (instruments validity test)

>Percentage of Correctly Classified outcomes for the estimated model

≻Pseudo-R<sup>2</sup>



## **References**

CEEY, Centro de Estudios Espinosa Yglesias (2019c). Movilidad Social en la Ciudad de México. 2019. Available at:

https://ceey.org.mx/informe-de-movilidad-social-en-la-ciudad-de-mexico-2019/#:~:text=Los%20resultados%20del%20estudio%20muestran,lo%20largo%20de%20su%20vida.

CEEY, Centro de Estudios Espinosa Yglesias (2023). Documento Metodológico Encuesta ESRU de Movilidad Social en Nuevo Leon 2021. Availible at: <u>https://ceey.org.mx/contenido/que-hacemos/emovi/</u>

Guevara A. (2018). Overidentification tests for the exogeneity of instruments in discrete choice models. Transportation Research Part B 114 (2018) 241–253. https://www.sciencedirect.com/science/article/abs/pii/S0191261518302303?via%3Dihub

Long J. Scott and Freese Jeremy (2014). Regression Models for Categorical Dependent Variables Using Stata, Third Edition. Stata Press

STATA 17. Base Reference Manual, Release 2017. Ivprobit-Probit model with continuous endogenous covariates. Available at: <u>https://www.stata.com/manuals/rivprobit.pdf</u>

Wooldridge, Jeffrey. M. (2010). *Econometric Analysis of Cross Section and Panel Data*. 2nd ed. Cambridge, MA: MIT Press.





# Stata Conference Portland 2024



Facultad de Economía