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1. Introduction: Examples

Example 1 Measuring cognitive decline in elderly women
(Women Who Maintain Optimal Cognitive Function into Old
Age. Barnes DE, Cauley JA, Lui L-Y, Fink HA, McCulloch CE,
Stone KL, Yaffe K. J Amer Geriatics Soc, 2007). A modified
Mini-Mental status examination was given at baseline and years
6, 8, 10 and 15 in a prospective cohort study (Study of
Osteoporotic Fractures). Which participants are thought to be in
mental decline and what predicts that decline?




Example 2 Effect of pre-hypertension at an early age in the
CARDIA study. (Prehypertension During Young Adulthood and
Presence of Coronary Calcium Later in Life: The Coronary
Artery Risk Development In Young Adults (CARDIA) Study.
MJ Pletcher, K Bibbins-Domingo, CE Lewis, G Wei, S Sidney,
JJ Carr, E Vittinghoff, CE McCulloch, SB Hulley, submitted).
Blood pressure measured every five years since 1986. How to
approximate previous and cumulative blood pressure exposure?




Example 3 Predicting those at risk for developing high blood
pressure in HERS (The Heart and Estrogen Replacement Study -
Hulley, et al, J. American Medical Association, 1998). HERS
was a randomized, blinded, placebo controlled trial for women
with previous coronary disease. We will use it as a prospective
cohort study for prediction of high blood pressure. 2,763 women
were enrolled and followed yearly for 5 subsequent visits. We
will consider only the subset that were not diabetic and with
systolic blood pressure less than 140 at the beginning of the

study.




2. Mixed models and prediction of random effects

One way to address the questions above is to utilize mixed models
and derive predicted values of the random effects.

Example 1 (cognitive decline):

MMSE;; =cognitive measur for participarti at timet
=bg; + byt + covariates- ¢j;

(bOi J ~ indep_N((ﬂo}(Uoo UmD
by 5L )\ 001 011

calculatdgjj = predicteddeclinefor participart .



Some realistic but made up data:

table visit, c(nmean nmmse n mMse sd nmse)

__________ Fo e e e e e e e e e e e e e e e e e e e e e e e e
0 | 27.08 2,031 2.2
1 | 27. 17 1,931 2.3
2 | 27.10 1, 850 2.3
3 | 27.08 1, 750 2.3
4 | 27.04 1, 361 2.3
5 | 27.10 269 2.2

So little change in average MMSE over time.



Xi: xtm xed mse visit exercise avgdrpwk || pptid: visit, cov(uns)
Perform ng EM optim zati on:

Perform ng gradi ent-based optim zati on:

lteration O: | og restricted-1ikelihood = -11662. 158
lteration 1: | og restricted-likelihood = -11662. 14
lteration 2: |l og restricted-likelihood = -11662. 14
Conputing standard errors:
M xed-effects REM. regression Nunber of obs = 9110
G oup variable: pptid Nunmber of groups = 2032
Qbs per group: mn = 1
avg = 4.5
max = 6
Val d chi 2(3) = 27. 24
Log restr-likelihood = -11662.14 Prob > chi 2 = 0. 0000



mse | Coef. Std. Err. Z P> z| [95% Conf. Interval]

visit |-.0060353 .0059123 -1.02 0.307 -.0176231 . 0055526
exercise | .0773954 .0179999 4.30 0.000 .0421162 . 1126746
avgdr pwk |-.0097331 .0037005 -2.63 0.009 -.0169859 -. 0024803

_cons | 27.11017 .0495455 547.18 0.000 27.01307 27.20728

Random effects Paraneters | Estimate Std.Err. [95% Conf. Interval]

pptid: Unstructured |
sd(visit)| .1942305 .005721 .183333 . 2057752
sd(_cons)| 2.158639 .034978 2.09115 2.228296
corr(visit, _cons)|-.0426722 .031013 -.103225 . 0181959

sd(Residual )| .481975 .004743 .A472767 . 4913616

LR test vs. |lin regression: chi2(3) = 17033.5 Prob > chi2 = 0.000



predi ct rslopedev rintdev, reffects

gen predsl ope=_b[visit]+rslopedev

col | apse rsl opedev rintdev predsl ope, by(pptid)
gen del t ammse=6* pr edsl| ope

sunmari ze
Vari abl e | Cbs Mean Std. Dev. M n Max
__________ Fo e e e e f e C e f e e f e f f e f et fmf e m e e e e e e e e e e e e e e e e e, .- =
pptid | 2032 1394. 65 794. 41 1 2761
rsl opedev | 2032 1.3e-10 . 1421 -. 7615 . 9239
rintdev | 2032 3.9e-10 2.133 -9. 8275 3.0384
pr edsl ope | 2032 -.006035 . 1421 -. 7676 . 9178
del tammse | 2032 -.036211 . 8530 - 4. 6057 5.5071

summari ze del tammse predslope i f deltamse<-2
Vari abl e | Cbs Mean Std. Dev. M n Max

del t am€mse | 40 -2.634 . 4937 - 4. 6057 -2. 0331
predsl ope | 40 -.4390 . 0822 -. 7676 -. 3388



Example 2 (pre-hypertension):

BR; =Dblooc pressur for participart i at timet
= spling (t) + covariates ¢jq,
(spline terms) ~indep.N(p, X)
calculatepredictedsplinefor participarti.

The area under the predicted blood pressure tomyebetween 120
and 140 mmHg was integrated over time as a cumalgire-
hypertension exposure (in years of mmHg). This thas used as
a predictor of coronary calcification.






Example 3 (high blood pressure):

BR; =1if blooc pressuris highfor subject at timet, anc 0 o/w
logit(P{ BR; =1}) =y, + covariates ¢j;,
boi ~i.i.d. N 0,05)

calculateEOi = predictednterceptfor participart .

Predicted values of random effects available fggrhanmor the
new (Ver 10) multilevel logit command nel ogi t



Thextm xed, xtnelogit, xt-etc. and gllamm
commands fit the models using reqgular or restricted
maximum likelihood. So they use a parametric assumption
for both the distribution of the outcome and the distribution of
the random effects, the latter typically that the distrimgio
are normal.

Key question: |Is the parametric assumption of the
random effects distribution important?

This Is especially crucial since we don’t get to directly
observe the random effects. Unfortunately, the predicted
random effects may not reflect the shape of the underlying
distribution. (More on this point later).



3. Review of impact of misspecification in mixed models

A number of Iinvestigations have focused on the ceffef
misspecifications in parametric mixed models. Thman be
grouped as:

1. Getting the distributional shape wrong.
2. Falsely assuming the random effect is independénthe
cluster size.
3. Falsely assuming the random effect is independeht o
covariates, e.g.,
a.Mean of random effects distribution could be assec
with a covariate.
b.Variance of random effects distribution couldassociated
with a covariate.



Most investigations have concentrated on the impaatstimation
of the fixed effects portion of the model.

General assessment
1) Getting the distributional shape wrong hasditimpact on
Inferences about the fixed effects.

2) Incorrectly assuming the random effects distrdou is
iIndependent of the cluster size may affect infegenabout the
Intercept, but does not seriously impact inferenedsut the
regression parameters.

3) However, assuming the random effects distriloutics
iIndependent of the covariates when it is not iepmally serious.
(Related to mean: Neuhaus and McCulloch, JRSSB5;2@lated
to the variance: Heagerty and Kurland, Biometriz)1).



What about inference about the predictions of the
random effects?

We’ll concentrate on the issue of wrong distribnéb shape,
where fixed effects inferences seem largely ungdtkc

Intuition: the assumed form of the random effasigribution
may be a more crucial assumption in this case.



4. Theoretical calculations (Linear Mixed Model)

First consider an easy situation. Assumed mode& mne-way
random effects model with known intercept and varea
components and normally distributed random effects:

Yie =u+b +&¢,t=1...,n51=1...,q
qqumbﬁ)
%4umhﬁ)

gt Uy, U, ag,and ag known
In which case the Best Linear Unbiased Predictgnsn by

~ gg
b= 5
Op +0¢In;

(Vi 1)



Writing this out:

b =2 (i )

- 5 2 (/'[+q+‘£_]D_/'l)




Conditional ong;, theY;; are independer (1 +b ,052). So

N 2 2
lq|lq~N[,uE: 20b q’agJ

Op +0'§/ni N;

and by is conditionally biased. Since the calculation® a
conditional onl;, results do not depend on the distribution oflthe
and so the conditional bias daws depend on the distribution.



SoB} converges in probability to the true valueras- . But
asymptotic calculations as — « are not usually of interest for a
random effects model.



What does the distribution of tie look like?

And what if the assumption of normality for th@s incorrect, i.e.,
not normal?

If n; is large then each is close tag and hence the distribution is
approximately correct.

But what about the case whanis not large, the usual case of
Interest?

Then the distribution ofy is the convolution of the true density
with the conditional density d& givenb;.



For example, suppose the true density is expongtiahifted to
have mean 0. Then the densitybpfs given by

ofexp{— (b - 1)°n /(203)}exp(—6 ~1)db,
0)

which is straightforward to evaluate numerically:



Flot of BELUF Densities for CGluster Size 2
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Flot of BELUF Densities for CGluster Size 4
Assumed MNaormal - BElue, Exponential - Red
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Flot of BELURF Densities for Cluster Size &
Assumed MNaormal - BElue, Exponential - Red
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Flot of BELURF Densities for Cluster Size 2
Assumed MNaormal - BElue, Exponential - Red
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Flot of BELUF Densities for CGluster Size 10
Assumed MNaormal - BElue, Exponential - Red
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Flot of BELUF Densities for CGluster Size 15
Assumed MNaormal - BElue, Exponential - Red
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Flot of BELUF Densities for CGluster Size 20
Assumed MNaormal - BElue, Exponential - Red
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What is the BLUP under the exponential assumption?

Model:

Yie =u+h +e,t=1..,m;i=1...,9
b ~i.i.d.oy(EQ) -1)
eip ~i.i.d. N(o,af)

gt Ub; 4, af,andag known

. Jn o
DefineA=—"—(Y —u+o,)—-——£%— .
Jg( % b) \/ﬁ()’




Then

= _o_ . _ 0 . @D,
b =Y nab+CD(A)\m’

where¢(t) and®(t) are the standard normal p.d.f. and c.d.f.

How do the assumed normal and assumed exponehli#P 8
compare?



BLUF

BLUPS Under Different Distributional Assumptions

Average in Cluster

Raw deviation Normal Exponential




5. Theoretical calculations (Binary matched pairs)

Assumed model
Yit |6 ~ Binomial(p;;),i =1,....q; t =1,2

logit(pjt) = 4 +b + Blyr=n
b ~i.i.d.|\|(30,a§)

Since there are only 4 data configurations pertefukere are only
four possible values fdg, for a given set of parameter values. For

example, whery;; = yi» =1, 5 is given by (withp(t) =1/@+e™"))

~ oJob<0(b) p(u + opb) p(u + opb+ B)db
b ==

[ @b) p(u + opb) p(u + opb + B)db




These depend on the assumed distribution. Thepidies of the
four (actually three) values depends on the tra&idution.

Probability Distribution for BLUPs

Probability

-1 -0.5 0] 0.5 1
Best Predicted Value

BLUP assumed normal == =BLUP true (exponential)




It Is also straightforward to calculate the meamniasg error of
prediction using the assumed and true models uftlukertrue
model. For example, if the assumed model is ngrmdlthe true
IS exponential here are some values of the meaarasarror of
prediction:

Mean squared error of prediction MSEFEED —Iq)z] with
u=0,0=1.

V4 Normal Exponential Percent
(assumed) (true) Increase
0 0.77 0.75 3.5%
1 0.82 0.79 3.0%
2 0.85 0.83 2.1%
3 0.87 0.85 1.4%



6. Simulation

We simulated data from the one-way random model:

Yiie =+ +e¢,t=1...,n;1=1...,Q
b ~i.i.d.|\|(o,a§)orq ~i.i.d.op €@ -1}
it ~i.i.d.|\|(o,a§) e Oby,
with g = 10 =n; and using the same random numbers for both the

normal and exponential random effects (and the sanoe terms).
10,000 replications. An assumed normal model was f



Simulation results
Estimates of the parameters

Nor mal True Ave SD Ave SE
U 1 1.00 0.33 0.32
|n(0§) 0 -0.01 0.075 0.075
In(o?) 0 -0.07 0.29 0.27
Exponential
U 1 1.00 0.33 0.31
|n(0§) 0 -0.01 0.075 0.075
In(o?) 0 -0.18 0.47 0.29

*Excludes one outlier



Estimates of fixed effects parametersarelittle affected.

Estimates of the parameters

Nor mal True Ave SD Ave SE
1 100 033 032
|n(IZ-£2) 0 -0.01 0.075 0.075
In(o?) 0 -0.07 0.29 0.27
Exponential
u 1 100 033 031
|n(0-£2) 0 -0.01 0.075 0.075
In(o?) 0 -0.18 0.47 0.29

*Excludes one outlier



Asisthe estimate of log of theresidual variance.
Estimates of the parameters

Normal True Ave SD Ave SE
U 1 1.00 0.33 0.32
In(o?)
|n(0'|§) 0 -0.07 0.2 0.2
Exponential
U 1 1.00 0.33 0.31
In(o)

|n(0'|§) 0 -0.1 0.4 0.29

*Excludes one outlier



But the estimate of the random effects variance is off.

Estimates of the parameters

Nor mal
7,
In(o)
In(ap)
Exponential
7,
In(o)

In(op)
*Excludes one outlier

True Ave SD Ave SE
1 1.00 0.33 0.32
0 -0.01 0.075 0.075
0 -0.07 0.29 0.27
1 1.00 0.33 0.31
0 -0.01 0.075 0.075
0 -0.18 0.47 0.29



Confidence interval coverage farwas slightly lower than

nominal for the normal (92%), and low for the exponential
(88%).

Mean square error of prediction for the BLUPs was 1.87 for
the normal model and 1.84 for the exponential.



Do the BLUPs calculated under the assumption of normality
reflect the true underlying shape (exponential)?

For data simulated with normally distributed random effects
the average skewness was -0.01 and the average kurtosis wa
2.50 (with a normal having values 0 and 3).

For data simulated with exponentially distributed random

effects the average skewness was 0.85 and the average
kurtosis was 3.14 (with an exponential(1) having values 2 and
9).



/. Example (HERYS)

Recall the HERS example: We will consider the &,@06men
who did not have high blood pressure and were adsedic at the
baseline visit. We will use the baseline and si&ithrough 3 to
predict the blood pressure at visits 4 and 5 anekldr or not the
woman had developed high blood pressure on elikgdvor 5.

Brief descriptive statistics:

Variable Mean/Percentage SD

Age 66.3 6.9

BMI 27.3 4.9
Weight 70.3 kg 13.4 kg

On BP meds 79%



Predictive model (for baseline and visits 1, 2 aphd

BR; = o +bygi + BBMI + B,EXER + B3AGE
+ S4MEDS + DM + ¢4,
bo ~i.i.d.|\|(o,a§) orbg; ~1.1.d.op{€d) -1}
calculateBRy = [ +by; + 4BMI + B,EXER + B3AGE
+ 4MEDS + 5DM (mixedmodelpred)
or BRy = By + BBMI + B,EXER + B3AGE
+ 4MEDS + 5:DM (fixed effectsonly)



How well do the predictions work?

For predicting the actual systolic blood pressure:

Prediction Errors

Method Ave Ave abs RMSE
Fixed effects only 3.4 13.8 18.1
Mixed model (normal) 3.9 11.0 14.9
Mixed model (exponential) 3.1 11.1 14.9

For predicting high BP or not:

Area under the ROC curve: Fixed effects — 0.55nNd — 0.80,
Exponential — 0.80.



Do they give the same predicted values? No, logecl
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Here is a plot of the difference between the ptedivalues:
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8. Summary

» Predicted values of random effects show modesitsatysto
the assumed distributional shape.

* Distribution shape of BLUPs often not reflectivetafe
random effects distribution.

e The ranking of predicted values is little affected.

 Fitting flexible distributional shapes is an easgywvio check
sensitivity of the results to the assumed shape.

| can be contacted athuck@biostat.ucsf.edu

Talk can be downloaded from my website, which caridund by
starting at: www.biostat.ucsf.edu




