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General Motivation

Estimation of average effect of binary treatment, allowing for

general heterogeneity.

Use matching to eliminate bias that is present in simple com-

parison of means by treatment status.
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Economic Applications

Labor market programs:

Ashenfelter (1978), Ashenfelter and Card (1985), Lalonde (1986),

Card and Sullivan (1989), Heckman and Hotz (1989), Fried-

lander and Robins (1995), Dehejia and Wahba (1999), Lechner

(1999), Heckman, Ichimura and Todd (1998).

Effect of Military service on Earnings:

Angrist (1998)

Effect of Family Composition:

Manski, McLanahan, Powers, Sandefur (1992)

Many other applications.
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Topics

1. General Set Up /Notation

2. Estimators for Ave Treatm Effect under Unconf.

3. Dealing with Lack of Overlap in Covariate Distributions

4. Implementation in STATA Using nnmatch

5. Illustration using Lalonde Data
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1. Notation

N individuals/firms/units, indexed by i=1,. . . ,N,

Wi ∈ {0,1}: Binary treatment,

Yi(1): Potential outcome for unit i with treatment,

Yi(0): Potential outcome for unit i without the treatment,

Xi: k × 1 vector of covariates.

We observe {(Xi, Wi, Yi)}N
i=1, where

Yi =

{
Yi(0) if Wi = 0,
Yi(1) if Wi = 1.

Fundamental problem: we never observe Yi(0) and Yi(1) for

the same individual i.
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Notation (ctd)

μw(x) = E[Y (w)|X = x] (regression functions)

σ2
w(x) = E[(Y (w) − μw(x))2|X = x] (conditional variances)

e(x) = E[W |X = x] = Pr(W = 1|X = x) (propensity score,

Rosenbaum and Rubin, 1983)

τ(x) = E[Y (1) − Y (0)|X = x] = μ1(x) − μ0(x) (conditional

average treatment effect)

τ = E[τ(X)] = E[Y (1)−Y (0)] Population Average Treatment Effect
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Assumptions

I. Unconfoundedness

Y (0), Y (1) ⊥ W | X.

This form due to Rosenbaum and Rubin (1983). Like selection

on observables, or exogeneity. Suppose

Yi(0) = α + β′Xi + εi, Yi(1) = Yi(0) + τ,

then

Yi = α + τ · Wi + β′Xi + εi,

and unconfoundedness ⇐⇒ εi ⊥ Wi|Xi.
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II. Overlap

0 < Pr(W = 1|X) < 1.

For all X there are treated and control units.



Motivation for Assumptions

I. Descriptive statistics. After simple difference in mean out-

comes for treated and controls, it may be useful to compare

average outcomes adjusted for covariates.

II. Alternative: bounds (e.g., Manski, 1990)
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III. Unconfoundedness follows from some economic models.

Suppose individuals choose treatment w to maximize expected

utility, equal to outcome minus cost, Yi(w)− ci · w, conditional

on a set of covariates X:

Wi = argmaxw E[Yi(w)|Xi]− ci · w.

Suppose that costs ci differ between individuals, indep. of po-

tential outcomes. Then

(i) choices will vary between individuals with the same covari-

ates, and

(ii) conditional on the covariates X the choice is independent

of the potential outcomes.
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Identification

τ(X) = E[Y (1)− Y (0)|X = x]

= E[Y (1)|X = x] − E[Y (0)|X = x]

By unconfoundedness this is equal to

E[Y (1)|W = 1,X = x] − E[Y (0)|W = 0, X = x]

= E[Y |W = 1,X = x] − E[Y |W = 0, X = x].

By the overlap assumption we can estimate both terms on the
righthand side.

Then

τ = E[τ(X)].
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Questions

How well can we estimate τ?

How do we estimate τ?

How do we do inference?

How do we assess assumptions (unconfoundedness/overlap)?
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2. Estimation of Average Treatment Effect under Un-

confoundedness

I. Regression estimators: estimate μw(x).

II. Propensity score estimators: estimate e(x)

III. Matching: match all units to units with similar values for

covariates and opposite treatment.

IV. Combining Regression with Propensity score and Matching

Methods.
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Regression Estimators

Estimate μw(x) nonparametrically, and then

τ̂ =
1

N

N∑
i=1

(μ̂1(Xi) − μ̂0(Xi)).

These estimators can reach efficiency bound.
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Propensity Score Estimators

The key insight is that even with high-dimensional covariates,

one can remove all bias by conditioning on a scalar function of

the covariates, the propensity score. Formally, if

Y (0), Y (1) ⊥ W | X.

then

Y (0), Y (1) ⊥ W | e(X).

(e(x) = Pr(W = 1|X = x), Rosenbaum and Rubin, 1983)

Thus we can reduce the dimension of the conditioning set (if

we know the propensity score) to one.
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Propensity Score Estimators (ctd)

Estimate e(x) nonparametrically, and then:

A. weighting (Hirano, Imbens, Ridder, 2003)

τ̂ =
1

N

N∑
i=1

(
Wi · Yi

ê(Xi)
− (1 − Wi) · Yi

1 − ê(Xi)

)
.

This is based on the fact that

E

[
W · Y
e(X)

∣∣∣∣∣X = x

]
= E

[
W · Y (1)

e(X)

∣∣∣∣∣X = x

]

= E

[
W

e(X)

∣∣∣∣∣X = x

]
· E [Y (1)|X = x] = μ1(x).
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Propensity Score Estimators (ctd)

B. Blocking (Rosenbaum and Rubin, 1983)

Divide sample in subsamples on the basis of the value of the

(estimated) propensity score. Estimate average treatment ef-

fect within each block as the difference in average outcomes

for treated and controls. Average within block estimates by

the proportion of observations in each block.

Using five blocks reduces bias by about 90% (Cochran, 1968),

under normality.
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Matching

For each treated unit i, find untreated unit �(i) with

‖X�(i) − x‖ = min
{l:Wl=0}

‖Xl − x‖,

and the same for all untreated observations. Define:

Ŷi(1) =

{
Yi if Wi = 1,
Y�(i) if Wi = 0,

Ŷi(0) =

{
Yi if Wi = 0,
Y�(i) if Wi = 1.

Then the simple matching estimator is:

τ̂ sm =
1

N

N∑
i=1

(
Ŷi(1)− Ŷi(0)

)
.

Note: since we match all units it is crucial that matching is
done with replacement.
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Matching (ctd)

More generally, let JM(i) = {�1(i), ..., �M(i)} be the set of in-

dices for the nearest M matches for unit i.

Define:

Ŷi(1) =

{
Yi if Wi = 1,∑

j∈JM(i) Yj/M if Wi = 0,

Ŷi(0) =

{
Yi if Wi = 0,∑

j∈JM(i) Yj/M if Wi = 1.

Matching is generally not efficient (unless M → ∞), but effi-

ciency loss is small (variance is less than 1+1/(2M) times the

efficiency bound).
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The bias is of order Op(N−1/k), where k is the dimension of

the covariates.

Matching is consistent under weak smoothness conditions (does

not require higher order derivatives).



Matching and Regression

Estimate μw(x), and modify matching estimator to:

Ỹi(1) =

{
Yi if Wi = 1,
Y�(i) + μ̂1(Xi)− μ̂1(Xj(i)) if Wi = 0

Ỹi(0) =

{
Yi if Wi = 0,
Y�(i) + μ̂0(Xi)− μ̂0(Xj(i)) if Wi = 1

Then the bias corrected matching estimator is:

τ̂ bcm =
1

N

N∑
i=1

(
Ỹi(1) − Ỹi(0)

)
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Variance Estimation

Matching estimators have the form

τ̂ =
N∑

i=1

(
Wi · λi · Yi − (1 − Wi) · λi · Yi

)
,

(linear in outcomes) with weights

λi = λ(W,X).

λ(W, X) (known) is very non-smooth for matching estimators

and bootstrap is not valid as a result. (not just no second

order justification, but not valid asymptotically)
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Variance conditional on W and X is

V (τ̂ |W, X) =
N∑

i=1

(
Wi · λ2

i · σ2
1(Xi) + (1 − Wi) · λ2

i · σ2
0(Xi)

)
.

All parts known other than σ2
w(x).

For each treated (control) find the closest treated (control)
unit: h(i) = minj 
=i,Wj=Wi

‖Xi − Xj‖. Then use the difference

between their outcomes to estimate σ2(Xi) for this unit:

σ̂2
Wi

(Xi) =
1

2
(Yi − Yh(i))

2.

Substitute into variance formula.

Even though σ̂2
w(x) is not consistent, the estimator for V (τ̂ |W, X)

is because it averages over all σ̂2
w(Xi).
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3. Assessing Overlap

The first method to detect lack of overlap is to plot distribu-

tions of covariates by treatment groups. In the case with one

or two covariates one can do this directly. In high dimensional

cases, however, this becomes more difficult.

One can inspect pairs of marginal distributions by treatment

status, but these are not necessarily informative about lack of

overlap. It is possible that for each covariate the distribution

for the treatment and control groups are identical, even though

there are areas where the propensity score is zero or one.

A more direct method is to inspect the distribution of the

propensity score in both treatment groups, which can reveal

lack of overlap in the multivariate covariate distributions.
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Selecting a Subsample with Overlap

Define average effects for subsamples A:

τ(A) =
N∑

i=1

1{Xi ∈ A} · τ(Xi)/
N∑

i=1

1{Xi ∈ A}.

The efficiency bound for τ(A), assuming homoskedasticity, as

σ2

q(A)
· E

[
1

e(X)
+

1

1 − e(X)

∣∣∣∣∣X ∈ A

]
,

where q(A) = Pr(X ∈ A).

They derive the characterization for the set A that minimizes

the asymptotic variance .
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The optimal set has the form

A
∗ = {x ∈ X|α ≤ e(X) ≤ 1 − α},

dropping observations with extreme values for the propensity
score, with the cutoff value α determined by the equation

1

α · (1 − α)
=

2 · E

[
1

e(X) · (1 − e(X))

∣∣∣∣∣ 1

e(X) · (1 − e(X))
≤ 1

α · (1 − α)

]
.

Note that this subsample is selected solely on the basis of the
joint distribution of the treatment indicators and the covari-
ates, and therefore does not introduce biases associated with
selection based on the outcomes.

Calculations for Beta distributions for the propensity score sug-
gest that α = 0.1 approximates the optimal set well in practice.
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4. Implementation in STATA Using nnmatch

Syntax:

nnmatch depvar treatvar varlist [weight] [if exp] [in range] [,

tc({ate|att|atc}) m(#) metric(maha|matname ) exact(varlistex)

biasadj(bias|varlistadj ) robusth(#) population level(#)

keep(filename) replace]
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nnmatch depvar treatvar varlist [weight] [if exp] [in range]

Basic command: treatvar must be binary variable
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option 1

tc({ate|att|atc})

One can est. the overall average effect of the treatment (ate),

or the average treatment effect for the treated units (att), or

the average effect for those who were not treated (atc)
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option 2

m(#)

The number of matches. In kernel matching estimators essen-

tially the key difference is that the number of matches increases

with the sample size. In practice there is little gain from using

more than 3-4 matches. Under homoskedasticity the variance

goes down proportional to 1+1/(2M), where M is the number

of matches.
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option 3

metric(maha|matname )

The distance metric. Two main options, the inverse of the

variances or mahalanobis distance. It can also be prespecified.
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option 4

exact(varlistex)

A special list of covariates receives extra weight (1000 times

the weight specified in met. Useful for binary covariates where

one wishes to match exactly.
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option 5

biasadj(bias|varlistadj )

In treatment and control group regression adjustment is used

based on the variables in this option. If bias(bias) is used, all

the variables used in the matching are used here again.

30



option 6 robusth(#)

heteroskedasticity consistent variance estimation.
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option 7

population

sample average treatment effect

1

N

N∑
i=1

(μ1(Xi) − μ0(Xi)) ,

versus population average treatment effect:

E[μ1(X) − μ0(X)].

The former can be estimated more precisely if there is hetero-

geneity in μ1(x) − μ0(x).
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option 8

level(#)

standard STATA option that specifies the confidence level for

confidence sets
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option 9

keep(filename) replace

Allows the user to recover output beyond the estimate and its

standard error.

A new data set is created with one observation per match, and

covariate information is kept for control and treated unit in

each match.
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Examples

nnmatch re78 t age educ black hisp married re74 re75 u74 u75,

tc(att)

nnmatch re78 t age educ black hisp married re74 re75 u74 u75,

tc(att) m(4) exact(reo75) bias(bias) rob(4) keep(lalonde temp1)

replace

nnmatch re78 t age educ black hisp married re74 re75 u74 u75,

tc(att) m(4) exact(pscore) bias(bias) rob(4) keep(lalonde temp2)

replace
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5. Illustration with Lalonde Data, CPS Control Group:

Summary Statistics

bysort t: summ re75 married

36





Estimation of Propensity Score

logit t age educ black hisp married re74 re75 reo74 reo75

predict pscore

bysort t: summ pscore
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Checking Plausability of Unconfoundedness

nnmatch re75 t age educ black hisp married re74 u74, tc(att)

m(4) bias(bias) rob(4)
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Selecting Sample

keep if (pscore>0.1)&(pscore<0.9)
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Checking Plausability of Unconfoundedness in Selected

Sample

nnmatch re75 t age educ black hisp married re74 u74, tc(att)

m(4) bias(bias) rob(4)
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Final Estimates

nnmatch re78 t age educ black hisp married re74 re75 u74 u75,

tc(att) m(4) bias(bias) rob(4)
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Cautionary note:

If there are few matching variables (all discrete), and many

ties, nnmatch can be very slow, and memory intensive.

One solution is to add a continuous matching variable, even if

it is unrelated to other things, to break the ties.
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