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Multistage sampling: U.S. PISA 2000 data
D

® Program for International Student Assessment (PISA):
Assess and compare 15 year old students’ reading, math, etc.

® Three-stage survey with different probabilities of selection
o Stage 1: Geographic areas k sampled

# Stage 2: Schools j=1,...,n(® sampled with different
probabilities 7; (taking into account school non-response)

s Stage 3: Students i=1,...,n}" sampled from school j, with
conditional probabilities ;;

® Probability that student : from school j is sampled:

Mij = |7y
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Model-based and design-based inference
D

® Model-based inference : Target of inference is parameter ( in infinite
population (parameter of data generating mechanism or statistical
model) called superpopulation parameter

# Consistent estimator (assuming simple random sampling) such
as maximum likelihood estimator (MLE) yields estimate B
® Design-based inference : Target of inference is statistic in finite
population (FP), e.g., mean score 7''" of all 15-year olds in LA

» Student who had a m;; = 1/5 chance of being sampled
represents w;; = 1/m;; = 5 similar students in finite population

» Estimate of finite population mean (Horvitz-Thompson):

~FP 1
y = E WijYij

# Similar for proportions, totals, etc.
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Model-based inference for complex surveys
D

°

Target of inference is superpopulation parameter 3

°

View finite population as simple random sample from
superpopulation (or as realization from model)

MLE EFP using finite population treated as target (consistent for 3)

| I

Design-based estimator of BFP applied to complex survey data

» Replace usual log likelihood by weighted log likelinood, giving
pseudo maximum likelihood estimator  (PMLE)

® |f PMLE is consistent for EFP, then it is consistent for ¢
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Multilevel modeling: Levels
D

® Levels of a multilevel model can correspond to stages of a multistage
survey
# Level-1: Elementary units i (stage 3), here students
# Level-2: Units 5 sampled in previous stage (stage 2), here
schools
o Top-level: Units £ sampled at stage 1 (primary sampling units),
here areas

® However, not all levels used in the survey will be of substantive
Interest & there could be clustering not due to the survey design

® In PISA data, top level is geographical areas — detalls are
undisclosed, so not represented as level in multilevel model
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Two-level linear random intercept model
D

#® Linear random intercept model for continuous y;;:
Yij = Bo + B1&1ij + - - + OpTpij + G5 + €35

® 1, ..,.2pi; are student-level and/or school-level covariates
® [(,...,0, are regression coefficients

® (; ~ N(0,v) are school-specific random intercepts, uncorrelated
across schools and uncorrelated with covariates

s ¢;; ~ N(0,0) are student-specific residuals, uncorrelated across
students and schools, uncorrelated with ¢; and with covariates
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Two-level logistic random intercept model
I

® Logistic random intercept model for dichotomous y;
# As generalized linear model

logit|Pr(yi; = 1|xi;)] = Bo + Bix1i; + -+ + BpTpis +

o As latent response model
Yi; = Bo+ B1x1ij + -+ BpTpiy + (G + €45

yij = 1if y;; >0, y;; =0if y;; <0
® (; ~N(0,7) are school-specific random intercepts, uncorrelated
across schools and uncorrelated with covariates

® ¢;; ~ Logistic are student-specific residuals, uncorrelated across
students and schools, uncorrelated with ¢; and with covariates
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lllustration of two-level

linear and logistic random intercept model
—————

exp(Bo+L1x:;+(;
E(yijlzij, ¢5) = Bo + Bixi; + ¢ Pr(y;; = 1|mi;, () = 1+e1:<£>(050+151:;¢j+3c)j)
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Pseudolikelihood

® Usual marginal log likelihood (without weights)

( )
n(?) ( n(H ) n(2) (.1)

10gH/< ]_]lf(yz-jlcg g9(¢;)d¢; = Zlog/exmzlogf(yijlcj)>g(C;;)de

\ J \ y,
Pr(y;[¢;)

® Log pseudolikelihood (with weights)

f )

>~ wylog [ exp Zwm o £ (115 165) { 9(G) 4G

j=1

\ /
® Note: need w; = 1/m;, w;; = 1/m;;; cannot use w;; = w;;w;

® Evaluate using adaptive quadrature, maximize using
Newton-Raphson [Rabe-Hesketh et al., 2005] in gllamm
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Standard errors, taking into account survey design
T S——
®» Conventional “model-based” standard errors not appropriate with

sampling weights
® Sandwich estimator of standard errors (Taylor linearization)

AN

cov(¥) = 2 tgT !

# 7. Expectation of outer product of gradients, approximated using
PSU contributions to gradients

» 7. Expected information, approximated by observed information
(‘model-based’ standard errors obtained from Z—1!)

$» Sandwich estimator accounts for
# Stratification at stage 1
# Clustering at levels ‘above’ highest level of multilevel model

® Implemented in gllamm with cluster() and robust options
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Analysis of U.S. PISA 2000 data

9

Two-level (students nested in schools) logistic random intercept
model for reading proficiency (dichotomous)

PSUs are areas, sampling weights w

;|; for students and w; for

schools provided

Predictors:

# [Female]: Student is female (dummy)

» [ISEI]: International socioeconomic index

# [MnISEI]: School mean ISEI

# [Highschool]/ [College]: Highest education level by either parent
IS highschool/college (dummies)

» [English]: Test language (English) spoken at home (dummy)

» [Oneforeign]: One parent is foreign born (dummy)

» [Bothforeign]. Both parents are foreign born (dummy)
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Data structure and gllamm syntax in Stata
D

® Data strucure

. list id_school wt2 wtl mn_isei isei in 28/37, clean noobs

id_school wit2 wtl mn_isei isel
2 105.82 9855073  47.76471 30
2 105.82 9855073  47.76471 57
2 105.82 9855073  47.76471 50
2 105.82 1.108695  47.76471 71
2 105.82 9855073  47.76471 29
2 105.82 9855073  47.76471 29
3  296.95 9677663 42 56
3  296.95 9677663 42 67
3  296.95 9677663 42 38
3  296.95 9677663 42 40

® (gllamm syntax

gllamm pass read female isei mn_isei high _school college
english one_for both for, i(id_school) cluster(wvarstr)
link(logit) family(binom) pweight(wt) adapt
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PISA 2000 estimates for multilevel regression model

Unweighted Weighted

Maximum likelihood Pseudo maximum likelihood
Parameter Est (SE) Est (SEr) (SEEL®Y)
(. [Constant] —6.034 (0.539) —5.878 (0.955) (0.738)
(1. [Female] 0.555 (0.103) 0.622 (0.154) (0.161)
Bo: [ISEI] 0.014 (0.003) 0.018 (0.005) (0.004)
B3: [MnISEI] 0.069 (0.001) 0.068 (0.016) (0.018)
B4: [Highschool] 0.400 (0.256) 0.103 (0.477) (0.429)
B5: [College] 0.721 (0.255) 0.453 (0.505) (0.543)
Be: [English] 0.695 (0.283) 0.625 (0.382) (0.391)
B7. [Oneforeign] —0.020 (0.224) —0.109 (0.274) (0.225)
(s [Bothforeign] 0.099 (0.236) —0.280 (0.326) (0.292)
Y 0.272 (0.086) 0.296 (0.124) (0.115)
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Problem with using weights in linear models
D

® Linear variance components model, constant cluster size n§-1) = n)
= [o + (j + €5, Var((;) =, Var(e;;) = 6

#® Assume sampling independent of ¢;;, w; ; = a > 1forall 7, j

® Get biased estimate of .
# Weighted sum of squares due to clusters
SSC™ = > @, -7.)° =) (G -C)+ Z (€% —&")* = SSC
J J
» Expectation of SSCV, same as expectation of unweighted SSC
0
E(SSCY) = (n® —1) |y +
n

o Pseudo maximum likelihood estimator

n(2) an(1)

i _ SSC oML

n2
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Explanation for bias

and anticipated results for logit/probit models
D

® Clusters appear bigger than they are (a times as big)
» Between-cluster variability in €*; greater than for clusters of size
an(l)
» This extra between-cluster variability in €7 Is attributed to ¢
o However, if sampling at level 1 stratified according to ¢;;, €.g.

0.25 if €5 > 0

(a4

Tilj =~

variance of €"; decreases, and upward bias of JP ML decreases

® Bias decreases as n!) increases

® In logit/probit models, anticipate that |37ML| increases when FME
Increases; therefore biased estimates of
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Solution: Scaling of weights?

® Scaling method 1 [Longford,1995, 1996; Pfeffermann et al., 1998]
(oo iVl sothat Y 3
|j Wil = wZIJ
i

Wil; =
Zi wz|]
» In linear model example with sampling independent of ¢;;, no bias
egen sum_w = sum(w), by(id_school)
egen sum_wsq = sum(w'2), by(id_school)
generate wtl = w *sum_w/sum_wsq

— o W

® Scaling method 2 [Pfeffermann et al., 1998]
(1)

n

% J (1)
13wy 7 Z

# In line with intuition (clusters do not appear bigger than they are)

egen nj = count(w), by(id_school)
generate wtl = w *nj/sum_w
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Simulations
e

® Dichotomous random intercept logistic regression
(500 clusters, N; units per cluster in FP), with

v, = 1+ 1 xy+ 1 @y +(+e€j, =1
Bo B1 B2

® Stage 1. Sample clusters with probabilities

0.25 if |¢;] > 1
0.75 if |¢;] <1

7Tj%

$® Stage 2: Sample units with probabilities

0.25 if €55 > 0

® Vary N; from 5 to 100, 100 datasets per condition, 12-point adaptive
guadrature
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Results for N; =5
.

True  Unweighted Weighted Pseudo maximum likelihood
Parameter value ML Raw Method 1 Method 2

Model parameters: Conditional effects

Bo 1 0.40 1.03 0.68 0.75
(0.11) (0.19) (0.16) (0.15)
3 1 1.08 1.19 0.96 0.98
(0.18) (0.32) (0.26) (0.26)
Bs 1 1.06 1.22 0.94 0.96
(0.22) (0.35) (0.25) (0.26)
N 1 0.39 1.47 0.58 0.70
(0.37) (0.21) (0.31) (0.30)
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Effect of level-1 stratification method (

® (1) Strata based on sign of ¢, ;
® (2) Strata based on sign of &;;, Cor(e;;,&i5) = 0.5
® (3) Strata based on sign of &;, Cor(e;;,&:5) = 0

True Raw Method 1
Parameter value (1) (2) (3) (1) (2) (3)
Bo 1 1.04 1.10 1.29 0.83 0.88 1.01
(0.16) (0.16) (0.21) (0.14) (0.13) (0.16)
51 1 1.06 1.11 1.26 0.91 0.92 0.99
(0.23) (0.26) (0.30) (0.20) (0.23) (0.25)
B2 1 1.11 1.12 1.17 0.91 0.91 0.96
(0.20) (0.21) (0.25) (0.16) (0.17) (0.19)
VY 1 1.19 1.33 1.77 0.40 0.61 0.98
(0.13) (0.15) (0.15) (0.34) (0.24) (0.16)
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Simulation results for

pseudo maximum likelihood estimation
D

® Little bias for /1) when N, > 50 (cluster sizes in sample n§1) > 25)

® For smaller cluster sizes:
» Raw level-1 weights produce positive bias for /1

# Scaling methods 1 and 2 overcorrect positive bias for /1
— apparently due to stratification based on sign of ¢;;

o Inflation of 3 estimates whenever positive bias for /1

# Good coverage using sandwich estimator (1000 simulations) for
N; =50
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Conclusions

9

Pseudo maximum likelihood estimation allows for stratification,
clustering, and weighting

Three common methods for scaling level-1 weights: no scaling,
scaling method 1, scaling method 2
Inappropriate scaling can lead to biased estimates

» |If clusters are sufficiently large, little bias — similar results with all
three scaling methods

» If level-1 weights based on variables strongly associated with
outcome, use no scaling

» |If level-1 weights based on variables not associated with
outcome, use method 1

» For intermediate situations, use method 2?
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