ECON2228 Notes 1

Christopher F Baum

Boston College Economics

2014–2015
Chapter 1: Nature of Econometrics and Economic Data

What do we mean by *econometrics*?

Econometrics is the field of economics in which statistical methods are developed and applied to estimate economic relationships, test economic theories, and evaluate plans and policies using forecasting techniques.
Why is econometrics separate from mathematical statistics?

Most applications of statistics in economics and finance are related to the use of non-experimental data, or observational data. The fundamental techniques of statistics have been developed for use on experimental data: that gathered from controlled experiments, where the design of the experiment and the reliability of measurements from its outcomes are primary foci.

In relying on observational data, economists are more like astronomers, able to collect and analyse increasingly complete measures on the world (or universe) around them, but unable to influence the outcomes.
We speak of this work as *empirical analysis*, or *empirical research*.

The first step is the careful formulation of the question of interest. This will often involve the application or development of an economic model, which may be as simple as noting that normal goods have negative price elasticities, or exceedingly complex, involving a full-fledged description of many aspects of a set of interrelated markets and the supply/demand relationships for the products traded.
Economists are often attacked for their imperialistic tendencies—applying economic logic to consider such diverse topics as criminal behavior, fertility, or environmental issues—but where there is an economic dimension, the application of economic logic and empirical research based on econometric practice may yield valuable insights.

Gary Becker, who has made a career of applying economics to non-economic realms, won a Nobel Prize for his efforts.
Crime, after all, is yet another career choice, and for high school dropouts who don’t see much future in flipping burgers at minimum wage, it is hardly surprising that there are ample applicants for positions in a drug dealer’s distribution network.

In risk-adjusted terms (gauging the risk of getting shot, or arrested and successfully prosecuted...) the risk-adjusted hourly wage is many times the minimum wage. Should we be surprised by the outcome?

Likewise, when marijuana is a much more profitable cash crop than soybeans, is it any surprise that many farmers will take the risk of growing it?
Irregardless of whether empirical research is based on a formal economic model or economic intuition, the hypotheses about economic behavior must be transformed into an *econometric model* that can be applied to the data.

In an *economic* model, we can speak of functions such as $Q = Q(P, Y)$; but if we are to estimate the parameters of that relationship, we must have an explicit functional form for the Q function, and determine that it is an appropriate form for the model we have in mind.
For instance, if we were trying to predict the efficiency of an automobile in terms of its engine size (displacement, in cubic inches or liters), Americans would likely rely on a measure like \(mpg \): miles per gallon.

But the engineering relationship is not linear between \(mpg \) and displacement; it is much closer to being a linear function if we relate gallons per mile (\(gpm = 1/\text{mpg} \)) to engine size. The relationship will be curvilinear in \(mpg \) terms, requiring a more complex model, but nearly linear in \(gpm \) vs displacement.
An *econometric* model will spell out the role of each of its variables: for instance,

$$gpm_i = \beta_0 + \beta_1 \text{displ}_i + \epsilon_i$$

would express the relationship between the fuel consumption of the i^{th} automobile to its engine size, or displacement, as a linear function, with an additive error term ϵ_i which encompasses all factors not included in the model.

The *parameters* of the model are the β terms, which must be estimated via statistical methods.
Let’s do this using Stata:

```
. sysuse auto, clear
(1978 Automobile Data)
. generate gpm = 1 / mpg
. regress gpm displacement

Source | SS       | df | MS
-------|----------|----|----
Model   | .007112247 | 1  | .007112247
Residual| .004845381 | 72 | .000067297
Total   | .011957628 | 73 | .000163803

Number of obs = 74
F(1, 72) = 105.68
Prob > F = 0.0000
R-squared = 0.5948
Adj R-squared = 0.5892
Root MSE = .0082

gpm      | Coef. | Std. Err. | t    | P>|t| | [95% Conf. Interval]
displacement | .0001075 | .0000105 | 10.28 | 0.000 | .0000866 .0001283
_cons     | .0289875 | .0022725 | 12.76 | 0.000 | .0244574 .0335176
```

```
. twoway (scatter gpm displacement, ylab(,angle(0))) ///
>   (lfit gpm displacement, ti("Fuel consumption vs engine size"))
. graph export auto1.pdf, replace
```
Fuel consumption vs engine size

Displacement (cu. in.)

Fitted values

gpm
The structure of economic data

A great deal of the work we will do in this course will relate to cross-sectional data: a sample of units (individuals, families, firms, industries, countries...) taken at a given point in time, or in a particular time frame. The sample is often considered to be a random sample of some sort when applied to microdata such as that gathered from individuals or households.

For instance, the official estimates of the U.S. unemployment rate are gathered from a monthly survey of individuals, in which each is asked about their employment status. It is not a count, or census, of those out of work.
Some cross sections are not samples, but may represent the population: e.g. data from the 50 states do not represent a random sample of states.

A cross-sectional dataset can be conceptualized as a spreadsheet, with variables in the columns and observations in the rows. Each row is uniquely identified by an observation number, but in a cross-sectional datasets the ordering of the observations is immaterial.

Different variables may correspond to different time periods; we might have a dataset containing municipalities, their employment rates, and their population in the 1990 and 2000 censuses.
The other major form of data considered in econometrics is the *time series*: a series of evenly spaced measurements on a variable. A time-series dataset may contain a number of measures, each measured at the same frequency, including measures derived from the originals such as lagged values, differences, and the like.

Time series are innately more difficult to handle in an econometric context because their observations almost surely are interdependent across time. Most economic and financial time series exhibit some degree of persistence.

Although we may be able to derive some measures which should not, in theory, be explainable from earlier observations (such as tomorrow’s stock return in an efficient market), most economic time series are both interrelated and autocorrelated: that is, related to themselves across time periods.
In a spreadsheet context, the variables would be placed in the columns, and the rows labelled with dates or times. The order of the observations in a time-series dataset matters, since it denotes the passage of equal increments of time.

We will discuss time-series data and some of the special techniques that have been developed for its analysis in the latter part of the course.
Two combinations of these data schemes are also widely used: *pooled cross-section/time series* (CS/TS) datasets and *panel*, or *longitudinal*, data sets.

The former (CS/TS) arise in the context of a repeated survey—such as a presidential popularity poll—where the respondents are randomly chosen. It is advantageous to analyze multiple cross-sections, but not possible to link observations across the cross-sections.
Panel data sets are much more useful. For instance, we might have timeseries of observations on the same unit: for instance, $C_{i,t}$ might be the consumption level of the i^{th} household at time t. Many of the datasets we commonly utilize in economic and financial research are of this nature.

A great deal of research in corporate finance is carried out with Standard and Poor’s COMPSTAT, a panel data set containing 20 years of annual financial statements for thousands of major U.S. corporations. Many specialized econometric techniques have been developed to analyze panel data. A number of these techniques are covered in ECON3327, Financial Econometrics, usually offered in the spring semester.
Causality and ceteris paribus

The hypotheses tested in applied econometric analysis are often posed to make inferences about the possible causal effects of one or more factors on a response variable: that is, do changes in consumers’ incomes “cause” changes in their consumption of beer?

At some level, of course, we can never establish causation—unlike the physical sciences, where the interrelations of molecules may follow well-established physical laws, our observed phenomena represent innately unpredictable human behavior.

In economic theory, we generally hold that individuals exhibit rational behavior; but since the econometrician does not observe all of the factors that might influence behavior, we cannot always make sensible inferences about potentially causal factors.
Whenever we “operationalize” an econometric model, we implicitly acknowledge that it can only capture a few key details of the behavioral relationship, and is leaving many additional factors (which may or may not be observable) in the “pound of ceteris paribus.”

The concept of ceteris paribus—literally, other things equal—always underlies our inferences from empirical research.

Our best hope is that we might control for many of the factors, and be able to use our empirical findings to ascertain whether systematic factors have been omitted. Any econometric model should be subjected to diagnostic testing to determine whether it contains obvious flaws.