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Abstract

It is well known that in dynamic general equilibrium economic models equilib-
rium may be indeterminate. Indeterminacy means that there is a continuum
of equilibrium trajectories converging to the same steady state. Very often,
the same mechanisms that are responsible for indeterminacy, like increasing
returns to scale or market imperfections, lead to existence of multiple steady
states, and development traps can arise. On the other hand, indeterminacy
often allows construction of rational sunspot equilibrium as a randomization
over di¤erent equilibrium trajectories or equilibria. The purpose of this paper
is to study the possibility of “rescuing” an economy from a development trap
through sunspot-driven self-ful…lling expectations.



1 Introduction

1.1 Indeterminacy and Poverty Traps

There are several types of models that produce “development traps” or “poverty
traps”. One group, best represented by (Azariadis and Drazen 1990), relies
on “thresholds” to generate poverty traps. In this model, investing a non-
zero amount of e¤ort into accumulating human capital can lead to a balanced
growth path with unlimited growth of all per capita quantities. Due to the
presence of externalities, however, it is not optimal to invest into human capital
accumulation until the average stock of it in the economy reaches some threshold
value. Any economy that starts below threshold remains there forever. If, due
to errors, some human capital is accumulated, it does not depreciate. The time
of crossing the threshold is, therefore, a function of the magnitude of errors, but
the crossing is inevitable if the magnitude is bounded above zero1.
Other papers with similar dynamics include (Lee 1996) where …nancial in-

termediaries accumulate information about investment opportunities by making
loans. In low information equilibrium, nobody lends. The paper proposes credit
subsidies or in‡ow of relatively cheap foreign capital to overcome the trap. In
(Ciccone and Matsuyama 1996), insu¢cient number of intermediate inputs hin-
ders adoption of modern technologies. High start-up costs required to estab-
lish the production of necessary inputs mean that reallocating scarce resources
from traditional production is ine¢cient, locking the economy in the poverty
trap. It is sometimes possible for a large number of entrepreneurs expecting fu-
ture growth to enter the specialized inputs markets, escaping from the poverty
trap due to self-ful…lling prophecy, but for other parameter value the trap is
inescapable. In another application of the same idea, (Burguet and Fernandez-
Ruiz 1998) construct a development trap in an economy with publicly provided
goods and public capital; su¢ciently low world interest rate might be needed
for escape.
General characteristics of the papers cited above is the existence of a certain

threshold that separates poverty-trap-locked economies from developing ones.
For an economy in the trap, there is no way out other than some change in pa-
rameters: consistent non-optimal accumulation of human capital, credit subsidy,
or supply of external funds at low world interest rates.
The other strand of models with poverty traps has some kind of dynamic

coordination failure or pessimistic expectations built in. Examples of such mod-
els include (Matsuyama 1991), (Gali and Zilibotti 1995), (Gans 1998), (Baland
and Francois 1996). There, non-convexity in production function due to increas-
ing returns, externalities, and/or market power lead to a possibility of multiple
steady states. In these models, indeterminacy exists — for given values of stock
variables like capital there are di¤erent choices of control variables like con-
sumption, work e¤ort, etc., such that a perfect foresight equilibrium trajectory

1Authors of (Arifovic, Bullard, and Du¤y 1997) use revised version of the model. Instead
of errors, it is random mutations forming part of the genetic algorithm learning mechanism
that lead to the accumulation of human capital. Eventually, the threshold is passed.
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converges to a steady state. Di¤erent choices of control variables might imply
convergence to di¤erent steady states, and initial conditions do not necessarily
determine to which steady state the economy converges. One can say that in
the above models, the economy might be consigned to a poverty trap by the
failure of economic agents to agree on the control variable value leading to the
best equilibrium. The distinction between two groups is not strict, though, as
majority of models in the second group allows parameter values leading to a
threshold type poverty trap.
The major motivation of the current paper is to discuss an additional mech-

anism of overcoming coordination failures or pessimistic expectations in the
models of the second type. As noted above, these models exhibit indetermi-
nacy. There are di¤erent types of indeterminacy. One situation is when there
are two (or more) saddle path stable steady states, and there are corresponding
unique trajectories converging to them. This case is sometimes referred to as
global indeterminacy. In this case, pessimistic or optimistic expectations simply
select one trajectory out of two or other small number. This happens for some
parameter values in (Gali and Zilibotti 1995), for example. On the other hand,
it may happen that for one or more steady state the linearization of the law of
motion has fewer unstable roots than “free” or control variables. In this case,
the stable manifold of the steady state has less dimensions that the number of
control variables, and there exists a continuum of values of control variables
that put the system onto the stable manifold. Therefore, there exists a contin-
uum of perfect foresight trajectories satisfying all the conditions for being an
equilibrium trajectory, including transversality condition. This case is referred
to as local indeterminacy, and it is the subject of this paper.
What happens if the system exhibits local indeterminacy? Suppose that

we have a decentralized economy. Agents are free to choose initial values of
the control variable(s) from some large set. Once the initial conditions are
agreed upon and the dynamics of the system unfolds, none of the agents has an
incentive to deviate from the optimal trajectory, which depends on the initial
conditions2. However, the trajectory chosen can be a very bad one - it could
include a very low level of, say, work e¤ort, and a low growth rate as the
result. Choosing a di¤erent initial condition with higher level of work e¤ort
could increase the growth rate and provide higher utility to every agent and
thus be Pareto improving3. Di¤erent starting point can even imply convergence
to a much better steady state with unbounded growth of all per capita variables,

2 If agents are small compared to the size of the economy, their deviation will not signif-
icantly change variables that are arguments of their decision rules - interest rate and wage
rate, for example. Thus, individual deviation from the optimal trajectory will reduce agent’s
payo¤.

3Note that in the presence of increasing returns and/or externalities, the initial trajectory
not necessary was Pareto optimal. In the process of solving such models, one usually assumes
that every agents takes the current level of externality as exogenously given; every agent then
faces a convex production function, and this decision problem is easily solved. To support
increasing return, one usually assumes some degree of monopolistic competition. In any
case, every agent makes decision under incomplete information and/or some market failures.
Therefore, the solution is not required to be Pareto optimal to begin with.
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as in endogenous growth models. A classical case of coordination failure can exist
in situations with local indeterminacy of the steady state.
Imagine the situation where a low growth state is locally indeterminate. The

decentralized economy develops along one of the trajectories leading to the low
growth state, that is, the economy is in the development trap. Assume that
there exists a high growth steady state which can also be locally indeterminate
or saddle path stable. In any case, agents need some device to help them
coordinate on a trajectory converging to the high growth steady state.

1.2 Sunspots as a Coordinating Mechanism

“Sunspot equilibria” are “rational expectations equilibria in which purely ex-
trinsic uncertainty a¤ects equilibrium prices and allocations” (Woodford 1990).
“Purely extrinsic uncertainty” denotes some random variable which has no e¤ect
on preferences, endowments, or production possibilities. If this random variable
and the resulting allocations and prices are stationary, one speaks about station-
ary sunspot equilibria, or SSE. In discrete time, one of the ways in which SSE are
constructed is the randomization between di¤erent non-sunspot equlibria; alter-
natively, SSE can be a randomization over di¤erent trajectories converging to
single non-sunspot equilibrium. This procedure can be performed when there ex-
ists indeterminate non-sunspot steady state. Indeed, in a simple OLG economy
with constant supply of money (Azariadis 1981), a necessary condition for the
existence of a particular kind of the SSE is exactly the condition for the indeter-
minacy of the non-sunspot rational expectations equilibrium (Woodford 1990).
This connection between indeterminacy of a rational expectations equilibrium
and the existence of some SSE (known as “Woodford’s Conjecture”) was estab-
lished for a broad class of discrete time models, for example in (Woodford 1986),
(Grandmont 1986), (Spear, Srivastava, and Woodford 1990).
Existence of sunspots is by no means limited to OLG or OLG-like discrete

time models. In (Spear 1991), existence of sunspot equilibria in a pure capital ac-
cumulation model where production is subject to externality was shown. Switch-
ing to continuous time models allows complete understanding of the model’s
global dynamics, especially when the model reduces to a two-dimensional system
of di¤erential equations. In (Drugeon and Wigniolle 1996) a continuous-time en-
dogenous growth model was studied. It was shown that when a balanced growth
path is locally stable, sunspot equilibrium with a Poisson process as a sunspot
variable exists. Finally, (Shigoka 1994) constructs a continuous time SSE in a
variety of growth models (including the one used here), where a sunspot vari-
able is a continuous time Markov process with …nitely many states. Woodford’s
Conjecture holds in all three cases.
Stability under the equilibrium learning dynamics was proposed in (Lucas

1986) as a criterion in deciding which of the many equilibria in the OLG should
be considered as more likely to occur . Lucas’s conjecture was that only limited
number of equilibria, and in particular locally determinate steady states, will
survive such a test. If this conjecture were always true, sunspot equilibria could
be considered esoteric theoretical constructs having no practical importance.
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Using a simple adaptive learning rule, (Du¤y 1994) has shown that indetermi-
nate monetary steady state can be selected over the determinate one in an OLG
economy with …at money, thus rejecting the Lucas’s conjecture. Furthermore,
as was shown in (Woodford 1990), in a particular case when the sunspot vari-
able can take on only two values and a monetary steady state is indeterminate,
a particular learning scheme converges to the SSE with probability 14. If the
sunspot variable can take more than 2 values, it is unknown to which equilib-
rium the learning scheme will converge; but the probability that it will converge
to the monetary steady state is still 0 when it is indeterminate5. Indeterminate
and SSE equilibria are more than theoretical curiosity; one can observe them6.
In this paper, we postulate the existence of SSE in a continuous-time model

in which the sunspot variable is a sample-path continuous stochastic process7.
Production technology in the model is subject to externality. It is also postu-
lated that the learning mechanism like that described in (Woodford 1990) has
taken place and has converged to a sunspot equilibrium. Agents simply add the
sunspot variable to their optimal decision, and this is the SSE8. As a result,
instead of simply moving along a particular trajectory, and, according to the
assumptions about the agents being uninformed about the nature of the exter-
nality, choosing actions based on incomplete information about the state space
outside that trajectory, agents coordinate on the sunspot and get to explore new
regions of the state space.
Suppose the economy starts in the development trap. In the model used

here, it means that consumption (and the work e¤ort) are chosen to be too low
because of the pessimistic expectations of the future wages and interest rates.
It is possible to select a level of initial consumption which will push the system
out of the trap and into the region of attraction of the positive steady state.
However, no individual agent has an incentive to experiment, and everyone is
coordinating on a trajectory leading to the origin. This coordination failure
could be …xed if agents could form expectations corresponding to a trajectory
converging to the positive steady state. Agents are unaware of existence of such
a trajectory because the externality is assumed to be unknown. If a sunspot
variable, modeled as a Wiener process, is included into the model, agents could
take it into account when making their decisions. Coordinating on a sunspot
white noise allows exploring new regions of the state space and can eventually

4The learning scheme studied in the paper is the one widely used in adaptive control - a
“stochastic approximation“ algorithm of (Robbins and Monro 1951).

5This passive adaptation approach was studied also in (Evans and Honkapohja 1994),
(Evans and Honkapohja 1995), (Marcet and Sargent 1989) and others. There are di¤erent
approaches to the problem, in particular active cognition (Evans and Ramey 1995). Conver-
gence of the learning process to the rational expectations equilibrium was shown in a wide
variety of models.

6Extracting information on the belief shocks from the …nancial markets data, (Salyer and
She¤rin 1998) show that model with self-ful…lling beliefs has incremental predictive power for
key US economic time series.

7Taking into account (Shigoka 1994), this assumption does not seem to be too over-
stretched.

8More detailed description of the construction of a sunspot equilibrium is given in Section
4.
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move the trajectory of the system out of the trap. As soon as the economy leaves
the trap, agents become aware of the existence of a new non-stochastic steady
state. It is assumed that in this case a regime change takes place and the agents
stop taking sunspot variable into account. Therefore the further dynamics of
the system reduces to convergence to the positive steady state. This will happen
if zero steady state is stochastically unstable under sunspot ‡uctuations or an
initial condition lies outside of the region of stochastic stability that might not
coincide with the development trap of the deterministic system. In case when
the economy eventually leaves the trap, it is possible to calculate expected …rst
exit times from the region of attraction of a zero steady state depending on the
initial conditions and magnitude of the sunspot process.
The rest of the paper is organized as follows. In Section 2, a brief summary

of the model described in (Benhabib and Farmer 1994) is given. Construction
of the phase portrait of the model is performed in Section 3 and existence of the
poverty trap is proven. Properties of the model subject to sunspot ‡uctuations,
in particular stochastic stability of the development trap, are studied in Section
4. Section 5 provides numerical estimates of escape probabilities and times, and
Section 6 concludes.

2 The Model
As a basis for analysis, I use (Benhabib and Farmer 1994). This deterministic
continuous-time model with in…nitely lived agents is characterized by increasing
social returns to scale due to externality in the production function of which the
agents are assumed to be unaware. There are two steady states. One has zero
capital and zero consumption (the origin), and positive levels of both capital
and consumption characterize the other one. For some parameter values, both
steady states are indeterminate, and the whole state space is separated into two
regions of attraction of the steady states. The region of attraction of the origin
is a development trap9.
The economy consists of a large number of identical consumers seeking to

maximize

1Z
0

(
C1¡¾

1¡ ¾ ¡
N1¡Â

1¡ Â )e
¡½tdt

subject to

¢
K = (r ¡ ±)K +wN ¡C

9There are models with indeterminate interior poverty traps, (Gali 1994) being but one of
them. For expositional clarity, the author has chosen the model reducing to the most simple
mathematical form possible. Further work will focus on more realistic models.
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where C is consumption, K capital, N work e¤ort, r interest rate, and w
the wage rate. There are a large number of identical …rms with the production
function

Y = KaNbK
®¡a

N
¯¡b

(1)

where a+ b = 1, ® > a, ¯ > b; and K and N are economywide averages of
K and N per …rm, which are taken as given by every individual …rm. From the
pro…t maximization, the interest rate and the wage rate are given by

wN = bY (2)

rK = aY

Identical consumers take trajectories of wage and interest rates as given
and solve their maximization problem. In equilibrium, all …rms employ the
same amount of labor and capital, and thus K = K; N = N: In the rational
expectations equilibrium, consumers know the correct trajectories of r and w.
Solving the problem and switching to logs, one gets the following system of
equations:

¢
c = [

a

¾
exp(w ¡ vk + uc)¡ ± + ½

¾
] (3)

¢
k = [exp(w ¡ vk + uc)¡ exp(c¡ k)¡ ±]

where w, v, and u are some functions of parameters that in particular depend on
® and ¯, and are assumed to be unknown to every decision maker in the model.
Under some parameter values, including the ones which are deemed “plausible”
by the authors of (Benhabib and Farmer 1994), the steady state of this model
is indeterminate - it has 2 stable roots. For the same parameter values, the
(minus in…nity, minus in…nity) – origin in original (C;K) space - is also stable.
The entire space is divided into two regions of attraction – one for the positive
steady state, and another for the origin. The latter region will also be called
“development trap” in the sequel. More detailed derivations and discussions are
provided in Section 3.

3 Deterministic Dynamics of the Model.

3.1 Solving the Problem

Hamiltonian for the problem is

H = (
C1¡¾

1¡ ¾ ¡
N1¡Â

1¡ Â )e
¡½t + ¸((r ¡ ±)K +wN ¡C) (4)
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First order conditions:

@H

@C
= 0, C¡¾e¡½t = ¸

@H

@N
= 0, N¡Âe¡½t = w¸

@H

@K
= ¡

¢
¸,

¢
¸ = e¡½t(¡½C¡¾ ¡ ¾

¢
CC¡¾¡1) (5)

lim
t!1¸K = 0

¢
K = (r ¡ ±)K +wN ¡C

Plugging …rst FOC into the third and then using (1) and (2) to exclude N ,
and switching to logs (as usual, small letters denote logs), one arrives at

¢
c = [

a

¾
exp(w ¡ vk + uc)¡ ± + ½

¾
] (6)

¢
k = [exp(w ¡ vk + uc)¡ exp(c¡ k)¡ ±]

where

w = ¡ ¯ log(b)

¯ + Â¡ 1
v =

¯ ¡ (1¡ ®)(1¡ Â)
¯ + Â¡ 1 (7)

u =
¾¯

¯ + Â¡ 1
The system does not look nice. De…nitely, we do not have global Lipschitz

conditions satis…ed (for a system of equations
¢
X = b(t;X) we should have

jb(t; x)¡ b(t; y)j · Bjx¡yj for any t and x; y). It is Lipschitz in every bounded
domain in (c; k) space.
The system (6) is extremely hard to analyze. It is therefore useful to change

the coordinates to

x = exp(w ¡ vk + uc) (8)

y = exp(c¡ k)
After this change of variables, our system transforms into

¢
x = x[(

a

¾
u¡ v)x+ vy + v± ¡ u± + ½

¾
] (9)

¢
y = y[((

a

¾
¡ 1)x+ y + ± ¡ ± + ½

¾
)]
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By construction, x and y are nonnegative, therefore only the …rst quadrant
of the (x; y) space should be considered.

3.2 Stability of Equilibria

The positive steady state of (9) is A= (x¤; y¤) = ( ±+½a ;
±+½
a ¡ ±). Linearization

of (9) around this steady state produces

J¤ =
·
x¤( a¾u¡ v) x¤v
y¤( a¾ ¡ 1) y¤

¸

Det jJ¤j = x¤y¤(u¡ v); Tr(J¤) = x¤(
a

¾
u¡ v) + y¤

To get indeterminacy, we need 2 stable roots, which means Det jJ¤j > 0;
Tr(J¤) < 0.
Recalling de…nitions of u and v and simplifying, one gets:

u¡ v = (¾ ¡ 1)¯ + (1¡ ®)(1¡ Â)
¯ + Â¡ 1 (10)

Following the original paper, where ® < 1; Â < 0, and assuming ¾ not too
far away from 1 (¾ = 1 means utility logarithmic in consumption), necessary
condition for indeterminacy is still ¯ + Â¡ 1 > 0. The trace is

± + ½

a
(
a

¾
u¡ v + 1)¡ ± = ± + ½

a

a¯ ¡ ®(1¡ Â)
¯ + Â¡ 1 ¡ ± = (11)

± + ½

a

a(¯ + Â¡ 1)¡ (®¡ a)(1¡ Â)
¯ + Â¡ 1 ¡ ± = ½¡ ± + ½

a

(®¡ a)(1¡ Â)
¯ + Â¡ 1

If there is no capital externality ( ® = a), trace equals ½ and is positive. The
lowest ® that makes trace negative is given by ® = a(1+ ½

±+½
¯+Â¡1
1¡Â ). Combining

all the conditions together, we see that if

¯ + Â¡ 1 > 0;

a(1 +
½

± + ½

¯ + Â¡ 1
1¡ Â ) < ® < 1; (12)

(¾ ¡ 1)¯ + (1¡ ®)(1¡ Â) > 0;

then the positive equilibrium is indeterminate. From now on, only parameter
values satisfying conditions (12) will be considered.
There are other possible equilibria of (9). Those are
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B = (0; 0);C = (0;
± + ½

¾
¡ ±); and D = (

u±+½¾ ¡ v±
a
¾u¡ v

; 0)

For ¾ not too large, ±+½¾ ¡ ± is positive. In the expression for abscissa of D,
denominator is given by

a

¾
u¡ v = a¯ ¡ ¯ + (1¡ ®)(1¡ Â)

¯ + Â¡ 1 =
a¯ ¡ ®(1¡ Â)
¯ + Â¡ 1 ¡ 1 = ®¡ 1¡ ®¡ a

¯ + Â¡ 1
(13)

which is always negative if conditions (12) are true. For the numerator, one
gets

u
± + ½

¾
¡ v± = (± + ½)¯ ¡ ±(¯ ¡ (1¡ ®)(1¡ Â))

¯ + Â¡ 1 =
½¯ + ±(1¡ ®)(1¡ Â)

¯ + Â¡ 1
(14)

which is always positive given (12). Therefore, the third equilibrium lies in the
second quadrant and does not interest us10.
Linearizing (9) around the origin, one gets the following Jacobian:

J =

·
v± ¡ u ±+½¾ 0

0 ± ¡ ±+½
¾

¸
(15)

The …rst non-zero element was estimated in (14) and is always negative, while
the second is negative for ¾ not too large (and negative for ¾ = 1). Therefore,
the origin is also stable in (9). Finally, for the steady state C, one gets

J =

· ±+½
¾ (v ¡ u) 0

( a¾ ¡ 1)( ±+½¾ ¡ ±) ±+½
¾ ¡ ±

¸

Here, the (2,2) element of J is positive, and taking into account (10) we
conclude that the (1,1) element of J is negative. Therefore, C is a saddle.

10 Steady states B and C both represent trajectories diverging to (-1;¡1) in the (c,k )
space. Diverging trajectories have di¤erent asymptotic behavior. The change of variables
collapses in…nity points from the lower half of the (c,k ) space onto the vertical half-axis in
the (x,y ) space. Trajectories with di¤erent asymptotic behavior at minus in…nity are mapped
into di¤erent points on the axis.
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3.3 Dulac Criterion and Limit Cycles

To characterize the global dynamics of the system, we have to know whether
limit cycles exist. The Dulac criterion states that if for the analytical two-
dimensional system

¢
x = P (x; y)
¢
y = Q(x; y)

in a simply connected regionG there exists a continuously di¤erentiable function
B(x; y); such that @(PB)

@x + @(QB)
@y does not change sign in G, then there are

no simple closed curves in G which are unions of paths of the system11. In
particular, there are no limit cycles (Andronov, Leontovich, Gordon, and Maier
1973). For a system

¢
x = x(a1x+ b1y + c1) (16)
¢
y = y(a2x+ b2y + c2)

the Dulac function is B(x; y) = xk¡1yh¡1; where k = b2(a2¡a1)
¢ ; h = a1(b1¡b2)

¢ ;
¢ = a1b2 ¡ a2b1 6= 0: Then

@(PB)

@x
+
@(QB)

@y
= (

a1c2(b1 ¡ b2)
¢

+
b2c1(a2 ¡ a1)

¢
)xk¡1yh¡1 (17)

When » = a1c2(b1¡b2)+b2c1(a2¡a1) 6= 0; this function vanishes only along the
integral curves x = 0 and y = 0: It does not change sign in the interior of any of
four quadrants. Also, it can be shown that there can be no closed contours which
are unions of paths in this case. After some algebraic transformations, it can
be shown that the condition on » amounts to a1x¤ + b2y¤ = Tr(J¤) = 0; where
(x¤,y¤) denotes the non-trivial equilibrium. When Tr(J¤) = 0; all trajectories
of the system are closed orbits.

It is possible to have Det jJ¤j > 0 and Tr(J¤) = 0 with two complex
conjugate eigenvalues having zero real part. However, the system does not
undergo Hopf bifurcation because there is no limit cycles when Tr(J¤) 6= 0:

3.4 Global Behavior

The phase portrait of (9) is presented in Figure 1. The whole …rst quadrant
is divided into 2 regions of attraction. The only trajectories that diverge to
in…nity are those that start on the vertical axis above C. The stable manifold of
C serves as a separatrix between regions of attraction. In logged consumption
and capital, the phase portrait is given by Figure 2. All trajectories that start

11Note that Bendixson’s criterion is a special case of the Dulac’s with B(x; y) = 1.
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above the transformed stable manifold of C converge to the positive steady
state corresponding to A. Trajectories with the initial conditions below it di-
verge to minus in…nity. In the original (C,K ) variables (Figure 3), the phase
portrait looks very similar to that of (9), the only di¤erence being that now the
separatrix of the two regions of attraction starts at the origin rather than on
the vertical axis. The stable manifold approaches the origin as a ray of constant
positive tangent. Any other trajectory of the system which approaches the ori-
gin behaves as C » K exp(¡½t): The distance between the stable manifold and
any such trajectory expressed as a percentage of actual consumption level grows
exponentially with time.
To obtain a point on the vertical axis f(x; y) : x = 0; y > 0g of Figure 1, the

following should be true:
uc ¡ vk = u(c ¡ k) + (u ¡ v)k ! ¡1, c ¡ k = const. This means that

k !¡1; c!¡1, but c¡k is …nite. This corresponds to going to the origin in
the non-logged (C;K) space along a ray with …nite tangent. In the (c,k) space
any trajectory asymptotically linearly diverging to minus in…nity satis…es the
condition. A point on the horizontal axis f(x; y) : x > 0; y = 0g is obtained
when uc ¡ vk = u(c ¡ k) + (u ¡ v)k = const, c ¡ k ! ¡1. This is possible
only when k ! 1, c arbitrary, but c goes to in…nity slower than k. In the
(C;K) space, this corresponds to C going to in…nity not faster than log(K)
or converging to a nonzero constant. What is the origin in the (x; y) space?
Writing the change of coordinates (8) as x =

¡
C
K

¢v
Cu¡v; y = C

K ; we see that
the origin corresponds to C < 1; CK = 0: Any trajectory in the (C;K) space
such that C = o(K); C ! 0 corresponds to a trajectory converging to the origin
in the (x; y) space. The trivial solution of Eq.(9) corresponds to a poverty trap,
or imploding economy.

4 Stochastic Dynamics

4.1 Constructing SDE

From the previous Section, we know that the system (9) has two stable steady
states, that there are no limit cycles, and no trajectory starting in the interior of
the …rst quadrant escapes to in…nity in the (x,y) space. A trajectory of (9) that
starts on the vertical axis above C escapes to in…nity; however, in the (C,K )
space this corresponds to a trajectory going to the origin with ever increasing
slope. Now we introduce a stochastic process into the system - the sunspot
process. A key behavioral assumption is that agents observe a sunspot variable,
which is a Wiener process. They simply add a “derivative” of the process to
their decision rule. To justify such an approach, one has to remember that
Itô stochastic di¤erential equation can be obtained as a limit in probability of
di¤erence equations if the driving noise is Markov process with independent
increments12. Existence of SSE of this form was shown in the current model by

12Construction of the SDE is very similar to that reported in (Shigoka 1994). Introducing a
sunspot disturbance in this way has a simple justi…cation. Adding e¾dWt to the equation for
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(Shigoka 1994) for a continuous time Markov process with …nitely many states.
A Wiener process is a continuous time Markov process with in…nitely many
states.
We start with a deterministic di¤erential equation (6) and formally add a

“di¤erential” of the Wiener process to the RHS of the equation for consumption.
The result is

dc = [
a

¾
exp(w ¡ vk + uc)¡ ± + ½

¾
]dt+ e¾dWt (18)

dk = [exp(w ¡ vk + uc) + exp(c¡ k)¡ ±]dt
This system of stochastic di¤erential equations (SDE) does not satisfy linear

growth condition or global Lipschitz conditions; however, for e¾ growing not
very fast with x; y (and not exploding as they go to zero), those are satis…ed in
every bounded cylinder, and we can construct a sequence of processes that are
solutions to the system (18) in cylinders and then construct a Markov process as
a limit of those as n goes to in…nity. The resulting process will be the solution of
(18) everywhere. Doing the same change of variables as in the previous Section
and applying the Itô theorem, one arrives at the following system of SDE:

dx = [x((
a

¾
u¡ v)x+ vy + v± ¡ u± + ½

¾
+
1

2
e¾2u2)]dt+ uxe¾dWt

dy = [y((
a

¾
¡ 1)x+ y + ± ¡ ± + ½

¾
+
1

2
e¾2)]dt+ ye¾dWt (19)

4.2 Stochastic Stability of the Origin

The de…nition of stochastic stability used here comes from (Khasminskii 1980).

De…nition 1 The solution x(t) ´ 0 is said to be asymptotically stable in prob-
ability if, for every " > 0 and every t > t0,
lim
x0!0

Pfsup
t>t0

jx(t; !; t0; x0)j > "g = 0 and moreover lim
x0!0

Pf lim
t!1x(t; !; t0; x0) =

0g = 1:
In plain English, according to the de…nition, the origin is asymptotically

stochastically stable if we can choose the ±¡neighborhood of the origin such
that all trajectories starting in it will remain inside a given ²¡neighborhood of
the origin with probability going to 1 as ± goes to 0. This de…nition is analogous
to the de…nition of stability in deterministic case. Moreover, we want all such
trajectories to converge to the origin as ± goes to 0, which has a close counterpart

log(C) is approximately equivalent to adding Ce¾dWt to the equation for C. C is the share
of the net present wealth (future wages and interest income) agents choose to consume at
time t. If agents consider increments of the sunspot variable as ‡uctuations in their present
discounted wealth, Ce¾dWt is simply an adjustment of this share due to the fact that perceived
wealth has changed.

12



in the asymptotic stability in the deterministic case. To prove the asymptotic
stability of the origin in (19) we will use the stability in …rst approximation.
A prominent role in the study of stochastic stability belongs to the operator

L; a di¤erential generator of the Markov process. Suppose that we are given a
system

dXt = b(t;X)Xdt+ ¾(t;X)XdWt (20)

where X 2 RN : Suppose further that there exists a function V (t;X) twice
continuously di¤erentiable with respect to X and continuously di¤erentiable
with respect to t: Then

LV (s; x) =
@V (s; x)

@s
+

NX
i=1

bi(s; x)
@V (s; x)

@xi
+
1

2

NX
i;j=1

¾i(s; x)¾j(s; x)
@2V (s; x)

@xi@xj

LV plays the role of a full time derivative of the Lyapunov function,
¢
V (t;X);

for stochastic di¤erential equations.
Consider a linear system of SDEs

dXt = BXdt+ ¾XdWt (21)

Suppose that a nonlinear system of SDEs has coe¢cients B(X) and ¾(X)
that are ”close” to B and ¾. Can we deduce the stability or instability of the
origin for the nonlinear system from stability of the origin for (21)?

Theorem 1 (Khasminskii 1980, Theorem 7.1.1) If the linear system with con-
stant coe¢cients (21) is asymptotically stable in probability, and the coe¢cients
of the system (20) satisfy an inequality

jb(t;X)¡Bj+ j¾(t;X)¡ ¾j < °jxj (22)

in a su¢ciently small neighborhood of the point x=0 and with su¢ciently small
constant °; then the solution X=0 of the nonlinear system is asymptotically
stable in probability.

Remark 1 In the proof of the Theorem 7.1.1, Khasminskii actually shows that
if the origin in (21) is exponentially p-stable for su¢ciently small p and (22)
holds, then the Theorem is true. For linear systems with constant coe¢cients,
asymptotic stability in probability implies exponential p-stability for su¢ciently
small p (Theorem 6.4.1 in Khasminskii 1980).

De…nition 2 Exponential p-stability (Khasminskii 1980). The solution X´0
of the system (20) is said to be exponentially p-stable for t ¸ 0, if for some
positive constants A and ®

Ejx(t;!;x0; t0)jp · Ajx0jp expf¡®(t¡ t0)g

13



Theorem 2 (Khasminskii 1980, Theorem 6.3.1) The solution X ´ 0 of the
linear system with constant coe¢cients is exponentially p-stable if and only if
there exists a function V(t,x), homogeneous of degree p in x, such that for some
constants ki > 0

k1jxjp · V (t; x) · k2jxjp; LV (t; x) · ¡k3jxjp;
j @V
@xi

j · k4jxjp¡1; j @
2V

@xi@xj
j · k4jxjp¡2; (23)

Applying the Theorem 1, we can see that stability of the origin in (19)
depends on the stability of the origin in the following linear system:

dx = x(v± ¡ u± + ½
¾

+
1

2
e¾2u2)dt+ uxe¾dWt

dy = y(± ¡ ± + ½
¾

+
1

2
e¾2)dt+ ye¾dWt (24)

To establish stability of (24), set V (t; x) = jxjp + jyjp: Then

LV = pjxjp
·
v± ¡ u± + ½

¾
+
1

2
e¾2u2 + 1

2
e¾2u2(p¡ 1)¸+

+pjyjp
·
± ¡ ± + ½

¾
+
1

2
e¾2 + 1

2
e¾2(p¡ 1)¸

or

LV = pjxjp
·
v± ¡ u± + ½

¾
+
1

2
e¾2u2p¸+ pjyjp ·± ¡ ± + ½

¾
+
1

2
e¾2p¸ (25)

A quick look at (15) assures one that LV (t; x) · ¡k3jxjp for p small enough.
Therefore, by Theorem 2 the solution X ´ 0 of the system (24) is exponen-
tially p ¡ stable, and by Remark 1, the trivial solution of the system (19) is
asymptotically stable in probability in a su¢ciently small neighborhood of the
origin.
The result means that for the economy that started very close to the origin,

probability of escape from the trap is low and goes to zero as the initial point
approaches the origin. There is no way out if expectations are very pessimistic.
The sunspot variable cannot …x expectations if they are too low to begin with.
The result should not come as a surprise because of the speci…cation of the pro-
cess that governs expectations. An addition to the derivative of consumption
due to the sunspot variable is proportional to the current level of consumption
itself. In the model, low expectations mean low consumption. Therefore, in a
pessimistic state the sunspot variable exercises very small in‡uence in absolute
terms. As stated previously, for the economy converging to the origin the dis-
tance to the boundary of the poverty trap becomes very large as a percentage
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of the current level of consumption. The in‡uence of the sunspot variable gets
smaller as the level of consumption gets small. The only realistic chance of
escape comes when the distance to the boundary is not exponentially large and
the sunspot in‡uence is not negligible. Both requirements are satis…ed when
the consumption level is not too low, which means expectations are not too
pessimistic.

Now we have to make a distinction between the stability of the origin in
the deterministic system (9) and the stochastic system (19). The basin of
attraction of the origin in the former system is a set in (x; y) space that for some
values of y is unbounded in x. The solution of (19) is guaranteed to converge
to the origin only as initial condition converges to zero. For any non-zero initial
condition, there is a positive probability that the trajectory will not converge
to the origin. A solution of (19) that started outside of the “su¢ciently small
neighborhood” of the origin is not guaranteed to converge to it or to remain
near it at all. Therefore, following a sunspot variable leaves the possibility that
the economy will escape poverty trap.

5 How good is a chance?

To understand how important sunspot-driven ‡uctuations could be for the econ-
omy’s escape from the poverty trap, some numerical simulations of stochastic
di¤erential equation (18) were performed. First, to obtain a “realistic” noise
magnitude, batches of 100 trajectories each with di¤erent noise intensities start-
ing from the positive steady state A of the deterministic system were run for
300 time units (years). A noise intensity that resulted in approximately 14%
standard deviation of the log consumption was chosen. This number is close to
the average reported for several developing countries by (Mendoza 1995). The
second step was to calculate the separatrix of the two regions of attraction.
This separatrix is the stable manifold of the steady state C of the transformed
system (9). A standard procedure was employed - calculate the eigenvector
corresponding to the stable eigenvalue at C and run the system of di¤erential
equations (9) backwards in time from a point close to C in the direction of
the eigenvector. Matlab5 procedure ode45 was used to calculate the trajectory.
Using the trasformation inverse to (8), this trajectory was transformed into
(c; k) space in which further simulations were made. The separatrix is the thick
solid line in Figures 1-3.
Numerical simulations of SDE are based on a stochastic Taylor expansion.

The following brief exposition is taken from (Kloeden, Platen, and Schurz 1994).
Suppose we are given a one-dimensional SDE (20). An equivalent integral
representation is
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Xt = Xt0 +

tZ
t0

b(Xs)ds+

tZ
t0

¾(Xs)dWs

For any twice continuously di¤erentiable function f : R ! R; Itbo’s formula
gives

f(Xt) = f(Xt0) +

tZ
(

t0

b(Xs)f
0(Xs) +

1

2
¾2(Xs)f

00(Xs))ds+

+

tZ
t0

¾(Xs)f
0(Xs)dWs (26)

= f(Xt0) +

tZ
t0

L0f(Xs)ds+

tZ
t0

L1f(Xs)dWs

where the two operators introduced are

L0f = bf 0 +
1

2
¾2f 00

L1f = ¾f 0:

Now, if one applies Itbo’s formula to the functions f = b and f = ¾ under
integral signs in (26), one gets the following

Xt = Xt0 + b(Xt0)

tZ
t0

ds+ ¾(Xt0)

tZ
t0

dWs +

tZ
t0

sZ
t0

L0b(Xz)dzds+

t

+

Z
t0

sZ
t0

L1b(Xz)dWzds+

tZ
t0

sZ
t0

L0¾(Xz)dzdWs +

tZ
t0

sZ
t0

L1¾(Xz)dWzdWs:

The procedure can be repeated, for example by applying Itbo’s formula to
f = L1¾ in the above expression, and so on. On every step, the expansion will
consist of multiple Itbo integrals

tZ
t0

ds;

tZ
t0

dWs;

tZ
t0

sZ
t0

dWzdWs

multiplied by some constants, and the remainder term involving higher-order
multiple Itbo integrals. Multiple integrals can be approximated numerically.
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A usual problem in the numerical simulation of SDEs is to generate approx-
imate values of the process Xt at the discretization times inside the interval
[0; T ]: For the uniform discretization ¿n = n¢; n = 1:::N with the step size
¢ = T

N the simplest approximation will look like

Yn+1 = Yn + b(Yn)¢n + ¾(Yn)¢Wn; Y0 = X0: (27)

The random variables ¢Wn are Wiener process increments, they are indepen-
dently Gaussian distributed with zero mean and variance ¢:
If a particular approximation satis…es the condition

E(
¯̄
XT ¡ Y ¢N

¯̄
) · K¢°

for all su¢ciently small time steps ¢ and some …nite constant K; it is said that
the approximation Y ¢ converges with strong order °: For example, the stochas-
tic Euler scheme (27) converges with strong order 0.5, while its deterministic
counterpart has the order 1.0.
For purposes of the current paper, an explicit strong order 1.5 scheme was

used. For a multi-dimensional process X with only one independent Wiener
disturbance13, the formula becomes

Y kn+1 = Y kn + b
k¢n +

1

2
L0bk¢2n +

+¾k¢Wn + L
0¾k(¢Wn¢n ¡¢Zn) + L1bk¢Zn + (28)

+L1¾k
1

2

³
(¢Wn)

2 ¡¢n
´
+ L1L1¾k

1

2

µ
1

3
(¢Wn)

2 ¡¢n
¶
¢n:

Here Y k; k = 1:::K is the k-th component of the multidimensional vector Y

and ¢Zn is a random variable de…ned by ¢Zn =
¿n+1R
¿n

s2R
¿n

dWs1ds2: This random

variable is normally distributed with mean zero, variance E
³
(¢Zn)

2
´
= 1

3¢
3
n,

and covariance E(¢Zn¢Wn) =
1
2¢

2
n: Two random variables ¢Wn and ¢Zn

can be generated from two independent standard normal variables G1 and G2
as ¢Wn =

p
¢n; ¢Zn =

1
2¢

3=2
n (G1 +

1p
3
G2):

The next step is to run batches of 100 trajectories with initial points inside
the deterministic poverty trap. The percentage of trajectories crossing the trap
boundary is interpreted as a probability that sunspot-driven ‡uctuations of a
given magnitude will lead to the escape from the trap. For the purposes of the
simulations, the time interval from 0 to 300 was chosen. All trajectories either

13Like the system (18). We have chosen to simulate (18) instead of the equivalent system
(19) because the former has noise intensity independent of state variables. For the approxi-
mation scheme chosen, this represented a major simpli…cation.
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crossed the boundary or moved very close to the origin in the (C;K) space
during this time interval14.
The basic result of the Section can be stated as follows: for the chosen level

of the noise intensity, the probability of escaping the trap is not negligible only
when the initial condition is very close to the trap boundary. The initial level
of consumption, C, should not be less than 85% of the boundary level in order
to see at least a couple escapes in a batch of 100 trajectories. The probability is
not very sensitive to the initial level of capital. Figure 4 plots the probability of
escape averaged over initial capital level versus the di¤erence between the initial
and borderline levels of consumption. As expected, it increases as expectations
become more optimistic (the di¤erence becomes smaller). Figure 5 presents
similarly averaged mean and median escape times for trajectories that eventually
leave the trap. For very optimistic expectations (initial consumption very close
to the boundary) absolute majority of escapes happens within the …rst year. For
the few trajectories that escape from pessimistic initial conditions (consumption
far from the boundary) the time is much longer, 50 years or more. Given the
structure of the SDE (18) the results are not surprising. In the (c,k) space, a
typical trajectory in the development trap runs almost parallel to the separatrix
for a su¢ciently long time. Therefore, in the …rst approximation the escape
happens if the stochastic process is able to cover the vertical distance between
the initial point and the boundary. The variance of the increment of the Wiener
process is linear in elapsed time. Larger distance to the boundary then implies
larger expected time before the trajectory hits the boundary. When the expected
time becomes too large, the fact that the separatrix and the trajectory are not
exactly parallel comes into play. The distance that needs to be covered increases
as time increases, and for large initial distances the stochastic process is unable
to hit the boundary with large probability.
The answer to the question posted in the beginning of the Section then is:

“Not very good”. It is possible to miss the target level of consumption (and
work e¤ort) and still avoid falling into the poverty trap, but the error should
not be large. Expected escape time and the escape probability are inversely
related, and the prognosis for chronically trapped economies is not good. Highly
probable escape happens very fast, and the imploding economies will probably
continue the downward spiral. The outcome is brought about by the sunspot
with magnitude proportional to the current level of consumption. A di¤erent
speci…cation of the sunspot variable might bring more optimistic results in this
model. The same sunspot variable can be more e¤ective in models where the
economies trapped in poverty do not converge to the origin. Then the magnitude
of the sunspot does not converge to zero as time goes to in…nity, and the escape

14The origin is asymptotically stochastically stable in the system (19). Moreover, it can
be shown that the trajectories that do not hit the separatrix in a …nite time converge to
the origin as time goes to in…nity. A trajectory was considered as having converged to the
origin in the (x,y) space and correspondingly in the (C;K) space if log(K) fell below 0. For
the positive steady state A, log(K)=7.32. Initial points for simulation purposes varied from
log(K)=4 to log(K)=8. In practice, after approximately 100 years the non-escaped solutions
would become numerically indistinguishable from the origin in the (C,K ) space.
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can be inevitable given enough time.

6 Conclusion

Poverty traps and indeterminacy in macroeconomic models may be caused
by the same set of reasons, like externalities or increasing returns to scale.
Wooford’s conjecture, proven to hold in a broad set of discrete time and con-
tinuous time models, allows one to expect the presence of sunspot ‡uctuations
whenever indeterminacy of the steady state is present. However, traditional
approach to sunspot ‡uctuations is strictly local: the sunspot variable is as-
sumed to behave in such a way that the economy subject to self-ful…lling beliefs
shocks does not leave the region of the state space where the dynamics without
sunspots takes place. This is usually achieved by chosing a random variable
with bounded support as the sunspot variable. Considering a continous time
model in only two dimensions allows one to describe fully both deterministic
and stochastic dynamics of the system. Ability to discuss global properties of
the stochastic process allowed us to raise a new question, that of connection
between the sunspot driven ‡uctuations and escape from the poverty trap.
Taking a simple model that exhibits indeterminacy of both the positive

steady state and zero steady state we were able to prove that the development
trap is asymptotically stochastically stable under the chosen speci…cation of the
sunspot variable. The sunspot variable used here has a natural interpretation
of a change in perceived present discounted wealth. Therefore the economy that
starts with a very low initial capital and very pessimistic expectations of future
interest rates and wages gets trapped. However, this analythical result is valid
only asymptotitcally and economies starting with …nite levels of capital and
consumption have nonzero probability of escape. To estimate numerically this
probability as a function of initial conditions, we assumed that the economies of
several developing countries operated around the positive steady state with busi-
ness cycle ‡uctuations caused by the sunspots described in our model. Allowing
the sunspots of similar magnitude to act in the economy with initial conditions
in the poverty trap, we were able to map the trap for initial conditions providing
non-negligible probability of escape. The set of those initial conditions is not
very large and is restricted to initial level of consumption within 85% of the level
necessary to put the system right on the boundary between the poverty trap
and the region of attraction of the positive steady state. At every …nite level of
the capital stock, there exists a level of consumption (and, accordingly, of the
work e¤ort) that withdraws the system from the poverty trap. However, for very
low levels of capital the change from “pessimistic” optimal level of consumption
to the “optimistic” one may constitute hundreds and thousands percent of the
“pessimistic” level. This feature of the model is a direct consequence of the
fact that the poverty trap is modeled as a point with zero capital and zero con-
sumption. A model with interior development trap will produce more optimistic
results under the same speci…cation of the sunspot variable. This is the subject
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of future study.
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Figure 1.  Phase portrait of the transformed system 
in (x,y) variables.
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