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Abstract
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accommodate all these situations.
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1 Introduction

Ellsberg (1961) suggested a number of thought experiments that challenge
Savage’s (1954) subjective expected utility theory and the sure-thing prin-
ciple. These experiments reveal different attitudes toward risk (objectively
given probabilities) and uncertainty or ambiguity (unknown probabilities).
Mainly motivated by these examples, several formal models have been pro-
posed to accommodate ambiguity aversion. Choquet expected utility is the
standard model used in the literature to explain the Ellsberg paradox (see
Schmeidler (1989) and Gilboa (1987)). Other well-known models are, for
example, maximin expected utility (Gilboa and Schmeidler (1989)), varia-
tional preferences (Maccheroni, Marinacci, and Rustichini (2006)), α-maxmin
(Ghirardato, Maccheroni, and Marinacci (2004)), and the smooth model of
ambiguity aversion (Klibanoff, Marinacci, and Mukerji (2005)).

Ellsberg experiments involve binary bets (that is, the ambiguous prospects
have only two outcomes). Machina (2009) offers examples of ambiguous
choice problems which involve three or more outcomes and which cannot be
handled by Choquet expected utility. Baillon, L’Haridon, and Placido (2012)
show that these examples pose difficulties not only for Choquet expected util-
ity, but also for the other four models mentioned above. In a follow-up paper,
Machina (2012) offers more examples of non-binary bets and explains why
they pose new difficulties to many of the above models. Evidently, the source
of these models’ inflexibility is a certain degree of event-separability that is
built into each one of them.

Our aim in this work is to show that all of Machina’s examples can eas-
ily be handled by the recursive non-expected utility model of Segal (1987,
1990). According to this model, the decision maker contemplates possible
probabilistic realizations of the given uncertainty, and computes for each of
them its subjective value for him. He then views the uncertain prospect as a
lottery over these subjective values, using his personal beliefs over the possi-
ble realizations. As the decision maker does not maximize expected utility,
inseparability between events is an integral part of this model.

Machina’s aim was not to investigate behavioral patterns of ambiguity,
but to show that several models of ambiguity aversion are unable to capture
features of ambiguity attitudes which can be revealed in choice over prospects
involving three or more outcomes. Consequentially, we are not proposing a
general theory or conditions under which a particular pattern of behavior will
be observed. Instead, we provide some simple examples demonstrating that
the recursive model is rich enough to accommodate these possible attitudes.
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The reminder of the paper is organized as follows: Section 2 reviews the
recursive non-expected utility model. Section 3 describes Machina’s exam-
ples; the examples in Sections 3.1 and 3.2 are taken from Machina (2009),
while the rest of the examples are taken from Machina (2012). For each
example, we mention which models are inconsistent with it, and show, by
means of examples, that it is consistent with recursive non-expected utility.

2 Recursive Non-Expected Utility

Let [w, b] be an interval of monetary prizes, and let S = {s1, . . . , sn} be a
finite state space. Consider a certain random variable x = (x1, s1; . . . ; xn, sn).
The decision maker does not know the probabilities of (all) the states s1, . . . ,
sn, but he has possible probability measures for them. For simplicity, assume
that there are m such possible measures, P j = (pj

1, . . . , p
j
n), j = 1, . . . ,m.

The decision maker believes that there is probability qj that the true measure
is P j. He therefore views the ambiguous prospect as a two-stage lottery,
where with probability qj he’ll play the lottery Xj = (x1, p

j
1; . . . ; xn, p

j
n),

j = 1, . . . ,m.
The decision maker is using a non-expected utility functional V to eval-

uate single-stage lotteries. Denote by cj the certainty equivalent of lottery
Xj, that is, the number that satisfies

V (cj, 1) = V (x1, p
j
1; . . . ; xn, p

j
n)

The decision maker replaces each of the second-stage lotteries X1, . . . , Xm

with its certainty equivalent using the functional V , thus obtaining the simple
lottery (c1, q1; . . . ; cm, qm). He then computes the V value of this lottery,
V (c1, q1; . . . ; cm, qm), which is his subjective value of the ambiguous random
variable x.

Of course, the decision maker may instead reduce the two-stage lottery
into a simple lottery by computing the probabilities of the final outcomes.
This is known as the reduction of compound lotteries axiom, and together
with the above recursive procedure is known to imply expected utility theory
(see Samuelson (1952)). The procedure we use must therefore violate the
reduction axiom and expected utility theory. For further analysis, see Segal
(1987, 1990).1

1Halevy (2007) provides evidence in favor of the recursive, non-expected utility model.
Approximately 40% of his subjects were classified as having preferences that are consistent
with that model.
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Identifying ambiguity with a compound lottery which the decision maker
fails to reduce, does not depend on the specific functional V used in the
evaluation procedure described above. Accordingly, we conduct our analysis
using two well known non-expected utility functionals: the rank-dependent
utility of Quiggin (1982) and Gul’s (1991) model of disappointment aversion,
which we now formally describe.

For x1 6 . . . 6 xn, the rank-dependent value V (x1, p1; . . . ; xn, pn) is given
by

u(xn)f(pn) +
∑n−1

i=1 u(xi)[f(
∑n

j=i pj)− f(
∑n

j=i+1 pj)] (1)

where f : [0, 1] → [0, 1] is strictly increasing and onto, and u : [w, b] → <
is increasing. Segal (1987) provided sufficient conditions on the probability-
weighting function f , under which a binary non-ambiguous lottery is pre-
ferred to an ambiguous (compound) one.

In Gul’s (1991) disappointment aversion model, the support of any non-
degenerate lottery is divided into two groups, the elating outcomes (which
are preferred to the lottery) and the disappointing outcomes (which are worse
than the lottery). The decision maker values lotteries by taking their “ex-
pected utility,” except that disappointing outcomes get a uniformly greater
(or smaller) weight that depends on the value of a single parameter β, the
coefficient of disappointment aversion. The disappointment aversion value of
a lottery X, V (X; β, u), is the unique v that solves

v =

∑
{x|u(x)≥v } p(x)u (x) + (1 + β)

∑
{x|u(x)<v } p(x)u (x)

1 + β
∑

{x|u(x)<v } p(x)
(2)

where β ∈ (−1,∞) and u : [w, b] → < is increasing. Note that in any non-
degenerate lottery, the highest outcome is elating and the lowest outcome is
disappointing.

Under the interpretation that ambiguity aversion amounts to preferring
the objective (unambiguous) simple lottery to the (ambiguous) compound
one, Artstein-Avidan and Dillenberger (2011) show that a disappointment
averse decision maker with β > 0 displays ambiguity aversion for any possi-
ble beliefs he might hold about the probability distribution over the states.
Furthermore, this result is valid for arbitrary number of outcomes.2

2This assertion is not specific to Gul’s model but applies to any member of the class of
preferences characterized in Dillenberger (2010).
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3 Addressing Machina’s Examples

The examples in Sections 3.1 and 3.2 are taken from Machina (2009). The
other examples are taken from Machina (2012).

3.1 The 50:51 Example

An urn contains 101 balls, each carries one of the numbers 1, . . . , 4. Of these,
50 are marked either 1 or 2 and 51 are marked either 3 or 4. Let Ei denote
the event “a ball marked i is drawn” and consider the following four acts:

50 balls 51 balls

Act E1 E2 E3 E4

f1 8,000 8,000 4,000 4,000

f2 8,000 4,000 8,000 4,000

f3 12,000 8,000 4,000 0

f4 12,000 4,000 8,000 0

By the sure-thing principle (Savage (1954)),3 f1 � f2 iff f3 � f4. Machina
showed that a property of Choquet expected utility, called tail-separability,
similarly implies that f1 is preferred to f2 if and only if f3 is preferred to
f4. Nevertheless, Machina (2009, Sec. II) invokes an Ellsberg-like argument
that f4 could be preferred to f3 even though f1 were preferred to f2, which
accordingly violates Choquet expected utility theory. Moreover, Baillon,
L’Haridon, and Placido (2012) show that the same holds true for the maximin
expected utility and α-maximin. For variational preferences and the smooth
model of ambiguity aversion, they show that f1 � f2 implies f3 � f4.

We now analyze the four acts f1, . . . , f4 using the recursive model, where
V is of Gul’s (1991) disappointment aversion model (2), with u(x) = x and
β = 0.2.4 In that case, V (X) is also the certainty equivalent of X.

Suppose that the decision maker believes that 25 balls are marked 1 and
25 balls are marked 2. With respect to the composition of the other 51 balls,
he believes that it is equally likely that either all of them are marked 3 or

3By the sure-thing principle, if on E, f1 = f2 and f3 = f4, and on ¬E, f1 = f3 and
f2 = f4, then f1 � f2 iff f3 � f4. In our case, E = E1 ∪ E4 and ¬E = E2 ∪ E3.

4Positive β implies that the decision maker is disappointment averse and, as is shown
in Gul (1991, Theorem 3), is also risk averse.
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all of them are marked 4.5 In the acts f1, . . . , f4 we deal with the following
simple lotteries (to simplify notation, we divide all outcomes by 1,000).

f1: X1 = (8, 50
101

; 4, 51
101

)

f2: X2 = (8, 76
101

; 4, 25
101

) and X3 = (8, 25
101

; 4, 76
101

)

f3: X4 = (12, 25
101

; 8, 25
101

; 4, 51
101

) and X5 = (12, 25
101

; 8, 25
101

; 0, 51
101

)

f4: X6 = (12, 25
101

; 8, 51
101

; 4, 25
101

) and X7 = (12, 25
101

; 4, 25
101

; 0, 51
101

)

Using eq. (2), we obtain that c1 = 5.798, c2 = 6.867, and c3 = 4.860. The
certainty equivalent of f2 is thus the certainty equivalent of (6.867, 1

2
; 4.860, 1

2
),

which is = 5.773. Hence f1 � f2.
Likewise, c4 = 6.698, c5 = 4.496, and the certainty equivalent of f3 is the

certainty equivalent of (6.698, 1
2
; 4.496, 1

2
) which is 5.497. On the other hand,

c6 = 7.811, c7 = 3.597, and and the certainty equivalent of f4 is the certainty
equivalent of (7.811, 1

2
; 3.597, 1

2
) which is 5.513. Hence f4 � f3.

It is worth noting that Gul’s model is just an example. In fact, since
the preferences f1 � f2 and f4 � f3 do not violate first-order stochastic
dominance, it is easy to find arbitrary choice of certainty equivalents that
will be consistent with these preferences. For example, let c1 = 6, c2 = 7,
c3 = 5, c4 = 10, c5 = 9, c6 = 11, and c7 = 8. Next, let X8 = (7, 1

2
; 5, 1

2
)

with c8 = 5.5, X9 = (10, 1
2
; 9, 1

2
) with c9 = 9.5, and X10 = (11, 1

2
; 8, 1

2
) with

c10 = 9.6, and we have f1 � f2 while f4 � f3.

3.2 The Reflection Example

Consider the following acts.

50 balls 50 balls

Act E1 E2 E3 E4

f5 4,000 8,000 4,000 0

f6 4,000 4,000 8,000 0

f7 0 8,000 4,000 4,000

f8 0 4,000 8,000 4,000

5This particular choice is not crucial for our result. That is, the argument could be
made with many other possible compositions of the urn. The recursive non-expected
utility model does not pin down the beliefs of the decision maker. Our aim is thus to make
our point using simple and plausible possible beliefs.
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The two acts f5 and f8 reflect each other and the decision maker should
therefore be indifferent between them. Likewise, f6 should be indifferent to
f7. As by the Choquet expected utility model f5 � f6 iff f7 � f8, it follows
that f5 ∼ f6 (and f7 ∼ f8). Yet, as is argued by Machina (2009, Sec. III),
ambiguity attitudes may well suggest strict preference within each pair.

Let α, β, γ, δ be a list of possible numbers of balls of the four types in the
urn, where α + β = γ + δ = 50. Denote by q(α, β, γ, δ) the probability the
decision maker attaches to the event “the composition of the urn is α, β, γ, δ.”
We say that such beliefs are symmetric if

q(α, β, γ, δ) = q(β, α, δ, γ) = q(γ, δ, α, β) = q(δ, γ, β, α).

If beliefs are symmetric, then the recursive model implies f5 ∼ f8 and
f6 ∼ f7, yet it does not require f5 ∼ f6. For example, let q(10, 40, 25, 25) = 1

4
.

As before, divide all outcomes by 1,000 and obtain that acts f5 and f8

become equal-probability lotteries over the certainty equivalents of X11 =
(8, 8

20
; 4, 7

20
; 0, 5

20
), X12 = (8, 2

20
; 4, 13

20
; 0, 5

20
), X13 = (8, 5

20
; 4, 13

20
; 0, 2

20
), and

X14 = (8, 5
20

; 4, 7
20

; 0, 8
20

). Acts f6 and f7 yield the lottery X15 = (8, 1
4
; 4, 1

2
; 0, 1

4
)

with probability 1
2
, and with probability 1

4
each of the lotteries X16 =

(8, 4
10

; 4, 5
10

; 0, 1
10

) and X17 = (8, 1
10

; 4, 5
10

; 0, 4
10

). Using Gul’s functional (2),
we obtain that c11 = 4.357, c12 = 3.238, c13 = 4.452, c14 = 3.148, and
V (f5) = V (c11, 1

4
; . . . ; c14, 1

4
) = 3.744. On the other hand, c15 = 3.809,

c16 = 5.0, c17 = 2.593, and V (f6) = V (c15, 1
2
; c16, 1

4
; c17, 1

4
) = 3.745, hence

f6 � f5.

3.3 The Slightly Bent Coin Problem

A coin is flipped and a ball is drawn out of an urn. You know that the coin is
slightly bent (but you don’t know which side is more likely or the respective
probabilities) and that the urn contains two balls, each is either white or
black. Which of the following bets do you prefer?

I black white

heads 8,000 0

tails -8,000 0

II black white

heads 0 0

tails -8,000 8,000

According to Machina (2012, Sec. IV), it is plausible that an ambiguity averse
decision maker will prefer Bet I to II. The reason is that if the coin is only
slightly biased, then betting on the coin flip (as in Bet I) is less ambiguous
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than betting on the color of the ball (as in Bet II). Yet he shows that a
Choquet expected utility maximizer must be indifferent between the two bets.

Consider first the urn with the two balls. As there is no reason to believe
any bias in favor of white or black, we assume that the decision maker believes
that the probability of each of the two events “there are two black balls” and
“there are two white balls” is q, and the probability of the event “there is
one black and one white ball” is 1− 2q.

The analysis of the coin is slightly more involved, as the decision maker
does not know the direction in which it is biased (heads or tails), nor does he
know the magnitude of the bias (that is, the probabilities p : 1−p of the two
sides). For simplicity we assume that the bias of the coin is equally likely to
be either ε or −ε. We thus obtain six possible probability distributions over
the four possible events.

case # Pr(h), # of b prob. hb hw tb tw

1 1
2

+ ε, #b = 2 q
2

1
2

+ ε 0 1
2
− ε 0

2 1
2
− ε, #b = 2 q

2
1
2
− ε 0 1

2
+ ε 0

3 1
2

+ ε, #b = 1 1
2
− q 1

4
+ ε

2
1
4

+ ε
2

1
4
− ε

2
1
4
− ε

2

4 1
2
− ε, #b = 1 1

2
− q 1

4
− ε

2
1
4
− ε

2
1
4

+ ε
2

1
4

+ ε
2

5 1
2

+ ε, #b = 0 q
2

0 1
2

+ ε 0 1
2
− ε

6 1
2
− ε, #b = 0 q

2
0 1

2
− ε 0 1

2
+ ε

The payoffs of the two gambles are given by I = (8,000,hb; 0,hw; -8,000,tb;
0,tw) and II = (0,hb; 0,hw; -8,000,tb; 8,000,tw). Using the rank dependent
functional (1) with u(x) = x and f(p) = 0.5(3p2−p3),6 ε = 0.05, and q = 0.25
we obtain that the certainty equivalents of the six lotteries are:

Lottery 1 2 3 4 5 6

Probability q/2 q/2 .5− q .5− q q/2 q/2

CE in I -2,071 -3,869 -1,830 -2,654 0 0

CE in II -5,035 -5,500 -2,092 -2,392 2,066 2,965

6This function leads to standard ambiguity aversion even though, since the elasticity
of f is decreasing, it does not satisfy Segal’s (1987) sufficient conditions.
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The V -values (and since u(x) = x, the certainty equivalents) of the two
options are V (I) = −2,377 and V (II) = −2,978, and I � II, which is
consistent with Machina’s prediction. On the other hand, setting ε = 0.25
and q = 0.05 (that is, the coin is seriously biased but the decision maker
believes that the two balls are most likely of different color) we obtain that
V (I) = −2,805 and V (II) = −2,438, and II � I.

3.4 The Upper/Lower Tail Problem

Let C denote your certainty equivalent of the lottery (100, 1
2
; 0, 1

2
). Urn I

and urn II contain each one red ball and two other balls, each of them is
either white or black. One ball is drawn from an urn of your choice, and the
payoffs are given in the following table. Do you prefer to play urn I or II?

red black white

urn I 100 0 C

urn II 0 C 100

Machina shows that none of the models mentioned in the introduction allow
the decision maker to have strict preferences between these two bets, that is,
they all impose indifference.

Using the analysis of section 3.3 above, the decision maker believes that
the probability of two black balls is q, the probability of two white balls is q,
and the probability of one black and one white ball is 1− 2q. The two urns
are thus transformed into two stage lotteries, given by

# of black balls 2 1 0

Probability q 1− 2q q

Urn I (0, 2
3
; 100, 1

3
) (0, 1

3
; C, 1

3
; 100, 1

3
) (C, 2

3
; 100, 1

3
)

Urn II (0, 1
3
; C, 2

3
) (0, 1

3
; C, 1

3
; 100, 1

3
) (0, 1

3
; 100, 2

3
)

Using again the rank-dependent functional V with u(x) = x and f(p) =
0.5(3p2 − p3) we obtain that C = 31.25 and the certainty equivalents of the
second stage lotteries are given by c(0, 2

3
; 100, 1

3
) = 14.814, c(0, 1

3
; C, 1

3
; 100, 1

3
)

= 26.388, c(C, 2
3
; 100, 1

3
) = 41.435, c(0, 1

3
; C, 2

3
) = 16.203, and c(0, 1

3
; 100, 2

3
) =

51.851. Urn I is thus reduced into the lottery (41.435, q; 26.388, 1−2q; 14.814,
q). Urn II is reduced into (51.851, q; 26.388, 1−2q; 16.203, q) which dominates
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urn I for every q ∈ [0, 1
2
). Machina predicted indeed that an ambiguity averse

decision maker should prefer urn II to urn I.7

4 Concluding Remarks

Machina’s (2009, 2012) examples are in line with a well-established tradi-
tion of “puzzles” in decision theory: A theory implies a specific relationship
between a pair of choices, even though thought or actual experiments system-
atically violate this relationship. Such are, for example, the Allais paradox
and the common ratio effect. In a similar way, Machina challenges the links
between different decision situations implied by several models.8

The aim of the current paper is not to determine the “correct” choices
in these decision problems. Rather, we show that those aspects of ambiguity
aversion which can emerge in Machina’s three-outcome examples, and which
cannot be handled by the other major models, can easily be accommodated
by the two-stage recursive ambiguity model of Segal (1987). In other words,
the recursive utility analysis of ambiguity, while consistent with the standard
intuition of ambiguity aversion with respect to Ellsberg (1961) problems, is
rich enough not to impose connections within Machina’s pairs. Machina
(2009) pointed out that “the phenomenon of ambiguity aversion is intrin-
sically one of non separable preferences across mutually exclusive events.”
In the recursive model there is no separability between the different events
because the underlying preference relation of lotteries in non expected util-
ity (hence non separable). In our analysis, we use very small sets of possible
beliefs about the true probabilities of the states. Obviously, the more compli-
cated and the richer are the beliefs, the easier it is to provide examples that
support Machina’s intuition. That our examples are so simple, therefore,
supports our claim for the recursive model.

7The dominance, or even the preferences of urn II over I is not a global property. Using
the (risk averse) functional V (X) = E[X] ·E[

√
X] implies that urn I is superior to urn II.

8The Allais paradox and the common ratio effect become part of Machina’s criticism
of the different models discussed by him. They all converge to expected utility on proba-
bilistic lotteries, and as sufficiently rich environment contain “almost” probabilistic events
(see Machina (2004)), these models are challenged by all the probabilistic violations of
expected utility theory. It is worth noting that the recursive model converges on proba-
bilistic lotteries to the non-expected utility functional V and is therefore not exposed to
such criticism.
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