Mathematics 210
Homework 3
Due Friday, September 26, 2 PM

Please note that this homework is due at 2 PM. No late homework can be accepted. You must turn in your answers by the start of class on Friday.

1. Let \(A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 3 \\ 7 & 4 & k \end{bmatrix} \). Find a value of \(k \) that makes the columns of \(A \) linearly dependent.

2. Let \(A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 3 \\ 7 & 4 & k \\ 11 & 3 & h \end{bmatrix} \). Find values of \(h \) and \(k \) that makes the columns of \(A \) linearly dependent.

3. (continued) Find values of \(h \) and \(k \) that makes the columns of \(A \) linearly independent.

4. Let \(A = \begin{bmatrix} 7 & 3 & 2 \\ 2 & 4 & 11 \\ 1 & 1 & 1 \end{bmatrix} \) and \(b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \). Is there a vector \(x \) so that \(Ax = b \)? If so, is that vector unique?

5. Let \(A = \begin{bmatrix} 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix} \), and let \(b = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \). Is there a vector \(x \) so that \(Ax = b \)? If so, is that vector unique?

6. Suppose that the set of vectors \(\{u, v, w\} \) is linearly dependent. Suppose that \(T \) is a linear transformation. Show that the set of vectors \(\{T(u), T(v), T(w)\} \) is linearly dependent.

7. Find a set of linearly independent vectors \(\{u, v, w\} \) and a linear transformation \(T \) so that the vectors \(\{T(u), T(v), T(w)\} \) are linearly dependent.

8. Suppose that \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) is a linear transformation defined by the two formulas \(T(e_1) = e_1 \) and \(T(e_2) = 2e_1 - 2e_2 \). What is the standard matrix of the linear transformation \(T \)?

9. Let \(A = \begin{bmatrix} 4 & 6 & 8 \\ 2 & 3 & 4 \end{bmatrix} \). Define a linear transformation \(A : \mathbb{R}^3 \to \mathbb{R}^2 \) with the formula \(T(x) = Ax \). Is \(T \) onto?

10. (continued) Is \(T \) one-to-one?