1. Decide if \(f : \mathbb{Z}/7\mathbb{Z} \to \mathbb{Z}/14\mathbb{Z} \) given by the formula \(f([x]_7) = [x^2]_{14} \) is a well-defined function. Be sure to explain your answer fully.

\textit{Answer:} This function is \textit{not} well-defined. We have \([1]_7 = [8]_7\). The formula gives \(f([1]_7) = [1]_{14} \), and \(f([8]_7) = [64]_{14} \), and \([1]_{14} \neq [64]_{14}\).

2. Let \(n \) be a positive integer. Show that \(g : \mathbb{Z}/2^n\mathbb{Z} \to \mathbb{Z}/2^{n+1}\mathbb{Z} \) defined by \(g([x]_{2^n}) = [x^2]_{2^{n+1}} \) is well-defined.

\textit{Answer:} Suppose that \([x]_{2^n} = [y]_{2^n}\). We need to prove that \([x^2]_{2^{n+1}} = [y^2]_{2^{n+1}}\). In the language of congruences, we are given \(x \equiv y \pmod{2^n} \), and we need to prove that \(x^2 \equiv y^2 \pmod{2^{n+1}} \).

If \(x \equiv y \pmod{2^n} \), then \(y = x + k2^n \), and so \(y^2 = (x + k2^n)^2 = x^2 + k2^{n+1} + k^22^{2n} = x^2 + 2^{n+1}(k + k2^{2n-1}) \equiv x^2 \pmod{2^{n+1}} \). In other words, \([y^2]_{2^{n+1}} = [x^2]_{2^{n+1}}\), which is the desired result.

3. Suppose that \(A \) is a finite set, \(f : A \to A \), and \(g : A \to A \). Suppose in addition that \(f \circ g : A \to A \) is a bijection. Prove that \(f \) and \(g \) are both bijections.

\textit{Answer:} Suppose that \(g(a_1) = g(a_2) \). Then \(f(g(a_1)) = f(g(a_2)) \). Because \(f \circ g \) is a bijection, we can conclude that \(a_1 = a_2 \). This shows that \(g \) must be an injection. But if \(g : A \to A \) and \(A \) is a finite set, then \(g \) must be a bijection.

We could use a similar argument to show that \(f \) must be a surjection, and therefore also a bijection. Alternatively, we can reason as follows: \(g \) is a bijection, so \(g^{-1} : A \to A \) exists and is also a bijection. We are given that \(f \circ g \) is a bijection, and therefore \(f \circ g \circ g^{-1} \) is a bijection. Because \(f \circ g \circ g^{-1} = f \), we conclude that \(f \) is a bijection.

4. Give an explicit example to show that the conclusion to the previous problem is \textit{false} if \(A \) is an infinite set. You need to tell me what you are using for the set \(A \), what the functions \(f \) and \(g \) are, and why neither \(f \) nor \(g \) are bijections.

\textit{Answer:} We want \(f \circ g \) to be a bijection, which requires \(g \) to be an injection, and \(f \) to be a surjection. We are asked for an example in which neither \(f \) nor \(g \) are bijections.

One possibility is to take \(A = \mathbb{Z} \) and \(g : \mathbb{Z} \to \mathbb{Z} \) and \(f : \mathbb{Z} \to \mathbb{Z} \) to be defined by the formulas:

\[
g(n) = \begin{cases}
 n + 1 & n \geq 0 \\
 n & n < 0
\end{cases}
\quad f(n) = \begin{cases}
 n - 1 & n \geq 0 \\
 n & n < 0
\end{cases}
\]

Then \(f \circ g(n) = n \). The function \(g \) is not a surjection, because there is no solution to \(g(n) = 0 \), and the function \(f \) is not an injection, because \(f(0) = f(-1) \). Notice, incidentally, that \(g \circ f(0) \neq 0 \), even though \(f \circ g(0) = 0 \).