Remember that the Fibonacci numbers are defined with the three equations

\[F_1 = 1 \]
\[F_2 = 1 \]
\[F_n = F_{n-1} + F_{n-2} \]

For example, we have \(F_3 = 2 \), \(F_4 = 3 \), and \(F_5 = 5 \).

1. Let \(k \) be a positive integer. Prove that \(F_{3k} \) is always even.

2. Let \(k \) be a positive integer. Prove that \(F_{4k} \) is always a multiple of 3.

3. Suppose that \(G \) is a group, and for every element \(a \in G \), we have \(a = a^{-1} \). Prove that \(G \) must be abelian.

4. If \(G \) is a finite group of even order, show that there must be an element \(a \neq e \) such that \(a = a^{-1} \).

5. Suppose that \(G \) is a group in which \((ab)^2 = a^2b^2\) for every pair of elements \(a \) and \(b \) in \(G \). Prove that \(G \) must be abelian.

6. If \(A \) and \(B \) are subgroups of \(G \), show that \(A \cap B \) is a subgroup of \(G \).

7. Let \(G \) be a group in which \((ab)^3 = a^3b^3\) and \((ab)^5 = a^5b^5\) for all \(a, b \in G \). Show that \(G \) is abelian.

8. Suppose that \(G \) is a group in which for some fixed positive integer \(n \), we have the three equations

\[(ab)^n = a^n b^n \]
\[(ab)^{n+1} = a^{n+1} b^{n+1} \]
\[(ab)^{n+2} = a^{n+2} b^{n+2} \]

for every pair of elements \(a \) and \(b \) in \(G \). Prove that \(G \) must be abelian.

9. Verify that \(Z(G) \), the center of \(G \), is a subgroup of \(G \).

10. If \(G \) is an abelian group and if \(H = \{ a \in G \mid a^2 = e \} \), show that \(H \) is a subgroup of \(G \).