MT414: Numerical Analysis

Homework 1

Answers

1. Let \(f(x) = xe^{-2} \).

(a) Find the fourth Taylor polynomial \(P_4(x) \) for \(f(x) \) about \(x_0 = 0 \).
(b) Find an upper bound for \(|f(x) - P_4(x)| \) for \(x \in [0, 0.4] \).
(c) Approximate \(\int_0^{0.4} f(x) \, dx \) using \(\int_0^{0.4} P_4(x) \, dx \).
(d) Find an upper bound for the error in the computation in part (c) by using your answer to part (b).
(e) Approximate \(f'(0.2) \) by computing \(P_4'(0.2) \). Use the correct answer for \(f'(0.2) \) (to 5 decimal places) to compute the relative error in your computation.

Answer:

(a) We have

\[
f(x) = xe^{-2}
\]

\[
f'(x) = e^{-2} + 2xe^{-2} = (1 + 2x^2)e^{-2}
\]

\[
f''(x) = 2xe^{-2} + (1 + 2x^2)(2x)e^{-2} = (6x + 4x^3)e^{-2}
\]

\[
f^{(3)}(x) = (6 + 12x^2)e^{-2} + (6x + 4x^3)(2x)e^{-2} = (6 + 24x^2 + 8x^4)e^{-2}
\]

\[
f^{(4)}(x) = (48x + 32x^3)e^{-2} + (6 + 24x^2 + 8x^4)(2x)e^{-2} = (60x + 80x^3 + 16x^5)e^{-2}
\]

\[
f^{(5)}(x) = (60 + 240x + 80x^3 + 32x^5 + 480x^5)(2x)e^{-2} = (60 + 360x^4 + 120x^5)e^{-2}
\]

We have \(f(0) = 0, \ f'(0) = 1, \ f''(0) = 0, \ f^{(3)}(0) = 6 \) and \(f^{(4)}(0) = 0 \). This means that \(P_4(x) = x + x^3 \).

(b) We know that \(f(x) = P_4(x) + E_4(x) \), where \(E_4(x) = f^{(5)}(\xi)x^5/120 \), where \(0 \leq \xi \leq x \). Because \(x \in [0, 0.4] \), the largest possible value of \(E_4(x) \) is given by \(f^{(5)}(0.4)(0.4)^5/120 \). We can also say that \(f^{(5)}(0.4) \leq 124e^{0.42} \leq 146 \), using 12-digit arithmetic, so \(f^{(5)}(\xi) \leq 146 \). Therefore, \(|f(x) - P_4(x)| = |E_4(x)| \leq 146 \cdot 0.4^5/120 \leq 0.0125 \).

(c) We can approximate \(\int_0^{0.4} f(x) \, dx \) by

\[
\int_0^{0.4} P_4(x) \, dx = \int_0^{0.4} (x + x^3) \, dx = \frac{x^2}{2} + \frac{x^4}{4}\bigg|_0^{0.4} = \frac{0.4^2}{2} + \frac{0.4^4}{4} = 0.0864.
\]

(d) The absolute error in this computation is

\[
\left| \int_0^{0.4} f(x) \, dx - \int_0^{0.4} P_4(x) \, dx \right| \leq \int_0^{0.4} |f(x) - P_4(x)| \, dx
\]

\[
= \int_0^{0.4} |E_4(x)| \, dx \leq \int_0^{0.4} 0.0125 \, dx = 0.0125 \cdot 0.4 = 0.005
\]

However, the relative error is possibly as large as \(\frac{0.005}{0.0864} \leq 0.07 \), so our answer is not quite correct to 2 decimal places.

(e) We have \(P_4'(x) = 1 + 3x^2 \), so \(P_4'(0.2) = 1.12 \). We can compute that \(f'(0.2) = 1.1241 \), so the relative error is 0.0036.

2. Use the Intermediate Value Theorem and Rolle’s Theorem to show that the equation \(x^3 + 2x + k = 0 \) has exactly one real solution, regardless of the value of the constant \(k \).

Answer: Let \(f(x) = x^3 + 2x + k \). Suppose that there are two unequal numbers \(a \) and \(b \) so that \(f(a) = f(b) = 0 \). Rolle’s Theorem then says that there is a value \(c \) between \(a \) and \(b \) so that \(f'(c) = 0 \). However, \(f'(c) = 3c^2 + 2 \), and the equation \(3c^2 + 2 = 0 \) has no solutions for any value of \(c \).
Therefore, there is at most one real solution. How can we be sure that there is at least one solution? Here’s an argument that is probably much too detailed: If \(|k| \leq 1\), then \(f(2) \geq 0\) and \(f(-2) \leq 0\), so the Intermediate Value Theorem can be applied to deduce that there must be a solution. If \(|k| > 1\), then \(f(|k|) > 0\), and \(f(-|k|) < 0\), so we again can apply the Intermediate Value Theorem.

3. Perform the following calculations

\(\text{(i)}\) exactly,
\(\text{(ii)}\) using three-digit chopping arithmetic, and
\(\text{(iii)}\) using three-digit rounding arithmetic.

\(\text{(iv)}\) Compute the relative errors in parts \((\text{ii})\) and \((\text{iii})\).

\[\begin{array}{cccc}
(a) & \frac{4}{5} + \frac{1}{3} & (b) & \frac{4}{5} \cdot \frac{1}{3} \\
(c) & \left(\frac{1}{3} - \frac{3}{11}\right) + \frac{3}{20} & (d) & \left(\frac{1}{3} + \frac{3}{11}\right) - \frac{3}{20}
\end{array}\]

Answer: We have

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>17 \frac{17}{15}</td>
<td>4 \frac{4}{15}</td>
<td>139 \frac{139}{15}</td>
<td>301 \frac{301}{15}</td>
</tr>
<tr>
<td>3-digit chopping</td>
<td>1.13</td>
<td>0.266</td>
<td>0.211</td>
<td>0.455</td>
</tr>
<tr>
<td>Relative error</td>
<td>0.003</td>
<td>0.0025</td>
<td>0.002</td>
<td>0.00233</td>
</tr>
<tr>
<td>3-digit rounding</td>
<td>1.13</td>
<td>0.266</td>
<td>0.21</td>
<td>0.456</td>
</tr>
<tr>
<td>Relative error</td>
<td>0.003</td>
<td>0.0025</td>
<td>0.0029</td>
<td>0.000133</td>
</tr>
</tbody>
</table>

4. Suppose that two points \((x_0, y_0)\) and \((x_1, y_1)\) are on a straight line with \(y_1 \neq y_0\). Two formulas are available to compute the \(x\)-intercept of the line:

\[x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0}\quad\text{and}\quad x = x_0 - \frac{(x_1 - x_0)y_0}{y_1 - y_0}.

\(\text{(a)}\) Show that both formulas are algebraically correct.

\(\text{(b)}\) Suppose that \((x_0, y_0) = (1.31, 3.24)\) and \((x_1, y_1) = (1.93, 4.76)\). Use three-digit rounding arithmetic to compute the \(x\)-intercept using both of the formulas. Which method is better and why?

Answer: (a) We should be a bit careful here to avoid dividing by 0. It is potentially unsafe to write that the equation of the line is \(y - y_0 = \frac{y_1 - y_0}{x_1 - x_0} x - x_0\), because potentially \(x_0 = x_1\). However, we are told that \(y_0 \neq y_1\),

so we can instead write the equation of the line as \(x - x_0 = \frac{x_1 - x_0}{y_1 - y_0} y - y_0\). We can cross-multiply and write this instead as \(x - x_0 = y - y_0 \left(\frac{x_1 - x_0}{y_1 - y_0}\right)\).

The \(x\)-intercept is the point on the line at which \(y = 0\), so we can substitute \(y = 0\) into this equation and get \(x - x_0 = (-y_0) \left(\frac{x_1 - x_0}{y_1 - y_0}\right)\), or \(x = x_0 - \frac{(x_1 - x_0)y_0}{y_1 - y_0}\), which is the given formula.

Now we can simplify:

\[x = x_0 - \frac{(x_1 - x_0)y_0}{y_1 - y_0} = \frac{x_0(y_1 - y_0)}{y_1 - y_0} - \frac{(x_1 - x_0)y_0}{y_1 - y_0} = \frac{x_0y_1 - x_1y_0}{y_1 - y_0}.
\]
(b) The first formula gives the answer \(-0.00658\), while the second formula gives the answer \(-0.0100\). In this case, the second formula is better. The first one involved subtracting \(x_0y_1 - x_1y_0\). Because \(x_0y_1 = 6.24\) and \(x_1y_0 = 6.25\), the result of the subtraction has only one significant digit.

We can check this by working to 10 significant digits. In that case, the first formula gives \(-0.0115789474\) and the second gives \(-0.0115789470\). Surely the answer is closer to \(-0.01\) than to \(-0.00658\).

5. The Taylor polynomial of degree \(n\) for \(f(x) = e^x\) is \(\sum_{i=0}^{n} \frac{x^i}{i!}\). Use the Taylor polynomial of degree 9 and three-digit chopping arithmetic to find an approximation to \(e^{-5}\) using each of the following methods:

\[
(a)\quad e^{-5} \approx \sum_{i=0}^{9} \frac{(-5)^i}{i!} = \sum_{i=0}^{9} \frac{(-1)^i5^i}{i!}.
\]

\[
(b)\quad e^{-5} = \frac{1}{e^5} \approx \frac{1}{\sum_{i=0}^{9} \frac{5^i}{i!}}.
\]

(c) Use your calculator to approximate \(e^{-5}\) to 8 places. Which formula, \((a)\) or \((b)\), gave the most accuracy, and why?

Answer: We have

<table>
<thead>
<tr>
<th>(i)</th>
<th>(i!)</th>
<th>(5^i)</th>
<th>(\frac{5^i}{i!})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>25</td>
<td>12.5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>125</td>
<td>20.8</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>625</td>
<td>26.0</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>3120</td>
<td>26.0</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>15600</td>
<td>21.6</td>
</tr>
<tr>
<td>7</td>
<td>5040</td>
<td>78000</td>
<td>15.4</td>
</tr>
<tr>
<td>8</td>
<td>40300</td>
<td>390000</td>
<td>9.67</td>
</tr>
<tr>
<td>9</td>
<td>362000</td>
<td>1950000</td>
<td>5.38</td>
</tr>
</tbody>
</table>

The formula in part \((a)\) gives \(1.00 - 5.00 + 12.5 - 20.8 + 26.0 - 26.0 + 21.6 - 15.4 + 9.67 - 5.38 = -1.81\). This is obviously incorrect, because \(e^{-5} > 0\). The formula in part \((b)\) gives \(1/(1.00 + 5.00 + 12.5 + 20.8 + 26.0 + 26.0 + 21.6 + 15.4 + 9.67 + 5.38) = 1/141 = 0.00709\). To 8 places, \(e^{-5} \approx 0.0067379470\).

The formula in part \((b)\) becomes a bit better if we add the numbers in increasing order, to avoid losing precision. We have \(1/(1.00 + 5.00 + 5.38 + 9.67 + 12.5 + 15.4 + 20.8 + 21.6 + 26.0 + 26.0) = 1/143 = 0.00699\).

The difficulty with the formula in part \((a)\) is that it can involve subtracting nearly equal numbers, resulting in a loss of precision.

6. Suppose that \(fl(y)\) is a \(k\)-digit rounding approximation to \(y\). Show that

\[
\left| \frac{y - fl(y)}{y} \right| \leq 0.5 \times 10^{-k+1}.
\]

Answer: Suppose that \(y = 0.d_1d_2d_3 \ldots \times 10^n\). If \(d_{k+1} < 5\), then \(fl(y) = 0.d_1d_2 \ldots d_k \times 10^n\), and therefore

\[
\left| \frac{y - fl(y)}{y} \right| = \left| 0.0 \ldots 0d_{k+1} \ldots \right| < 5 \times 10^{-k-1} \times 0.1 = 5 \times 10^{-k} = 0.5 \times 10^{-k+1}.
\]

If \(d_{k+1} \geq 5\), then \(fl(y) = (0.d_1d_2 \ldots d_k \times 10^{-k}) \times 10^n\), and then

\[
\left| \frac{y - fl(y)}{y} \right| = \left| 0.0 \ldots 0d_{k+1} - 10^{-k} \right| \leq 5 \times 10^{-k-1} \times 0.1 = 0.5 \times 10^{-k+1}.
\]