Example: A rectangular printed page is to have margins 2 inches wide at the top and bottom and 1 inch margins along the sides. If the page is to have 35 in\(^2\) of printed text on it, what is the minimum area of the page itself?

Solution: Draw a picture:

Label constants and variables appropriately. Define variables in English.

Build objective function (which is to be optimized – here minimized).
Our objective function has two variables, so we seek an auxiliary relationship which allows us to eliminate a variable. What is that relationship?

Solve for y in terms of x to get $y =$ making our objective function depend on only one variable: $A(x) =$

Determine the restricted domain over which we are considering realistic, model consistent values for x. Restricted domain for A is: Discover the critical points of A within this domain. The derivative of A is $A'(x) =$

On our domain, A has no weird critical points, where A' fails to exist. The derivative equals 0
when \(x = \) and at that point we have \(y = \).

Notice that our second derivative is \(A''(x) = \frac{140}{x^3} \) which is always \(> 0 \) indicating that our critical point corresponds to a minimal area. For our critical value of \(x \), the area of the printed page with minimum area is given as \(A(x) = 76.4664 \).

Example: Where should Roger cut a piece of wire which is 16 inches long in order to form a circle and a square with the two pieces of wire and so as to have the total area enclosed by the two shapes to be maximal?

Solution: Draw a picture:
Label the constants and the variables:

How long is the section of wire destined to be the square? \(L_{\text{square}} = \) .
How long is the section of wire destined to be the circle? \(L_{\text{circle}} = \) .
What is the side length of the square? \(s = \) .
What is the radius of the circle? \(r = \) .

What area will the square enclose? \(A_{\text{square}} = \)
What area will the circle enclose? \(A_{\text{circle}} = \)
Our objective function therefore will be

\[A(x) = \]

And our restricted domain for \(x \) is .
The derivative function is defined everywhere and the derivative is zero when
\[0 = A'(x) = \frac{-32}{\pi} + \left(\frac{2\pi + 8}{\pi}\right)x \quad \Rightarrow \quad x = \frac{16}{\pi + 4} \]

The second derivative is:
\[A''(x) = \left(\frac{2\pi + 8}{\pi}\right) \]
which is always positive indicating our value for \(x \) provides us with a minimum value for \(A \).

That is NOT what we wanted. Let’s examine the behavior of the function at all extreme candidates. Remember because the function is continuous on a closed interval we are guaranteed both an absolute max and an absolute min.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>(\frac{16}{\pi + 4})</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(x))</td>
<td>(64/\pi)</td>
<td>8.96</td>
<td>16</td>
</tr>
</tbody>
</table>
Since $64/\pi = 20.37$, our interpretation is that the maximal area is enclosed when