The SPost package by Scott Long and Jeremy Freese is a suite of post-estimation commands used to compute additional tests and effects representations for a variety of regression models (see http://www.indiana.edu/~jslsoc/spost.htm). To facilitate and automate the task of processing result from SPost for inclusion in reports and publications, estadd provides tools to integrate SPost results with estout or esttab.
Supported commands are brant, fitstat, listcoef, mlogtest, prchange, prvalue, and asprvalue from SPost for Stata 9 or newer (spost9_ado). SPost for Stata 8 (spostado) is not supported. See the SPost section in estadd's documentation for further details. Below is a range of examples covering various models and applications.
The general procedure to tabulate results from an SPost command in esttab or estout is to
For example, to tabulate a number of fitstat information measures for a linear regression model, type:
. spex regjob2 (Academic Biochemists / S Long) . regress job fem phd ment fel art cit Source | SS df MS Number of obs = 408 -------------+------------------------------ F( 6, 401) = 17.78 Model | 81.0584763 6 13.5097461 Prob > F = 0.0000 Residual | 304.737915 401 .759944926 R-squared = 0.2101 -------------+------------------------------ Adj R-squared = 0.1983 Total | 385.796392 407 .947902683 Root MSE = .87175 ------------------------------------------------------------------------------ job | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- fem | -.1391939 .0902344 -1.54 0.124 -.3165856 .0381977 phd | .2726826 .0493183 5.53 0.000 .1757278 .3696375 ment | .0011867 .0007012 1.69 0.091 -.0001917 .0025651 fel | .2341384 .0948206 2.47 0.014 .0477308 .4205461 art | .0228011 .0288843 0.79 0.430 -.0339824 .0795846 cit | .0044788 .0019687 2.28 0.023 .0006087 .008349 _cons | 1.067184 .1661357 6.42 0.000 .7405785 1.39379 ------------------------------------------------------------------------------ . estadd fitstat, bic AIC: 2.580 AIC*n: 1052.793 BIC: -1371.725 BIC': -60.162 BIC used by Stata: 1080.872 AIC used by Stata: 1052.793 added scalars: e(aic0) = 2.5803757 e(aic_n) = 1052.7933 e(bic0) = -1371.7248 e(bic_p) = -60.162312 e(statabic) = 1080.8722 e(stataaic) = 1052.7933 . esttab, cells(none) scalars(aic0 aic_n bic0 bic_p) ------------------------- (1) job ------------------------- N 408 aic0 2.580 aic_n 1052.8 bic0 -1371.7 bic_p -60.16 -------------------------
If you are working with multiple models you can either add results to each model individually after estimation (as above), or you can first estimate and store a set of models and then apply estadd to all of them in one call using the colon syntax. Here is an example of the latter, using eststo to store the models:
. spex regjob2 (Academic Biochemists / S Long) . eststo: regress job fem phd ment Source | SS df MS Number of obs = 408 -------------+------------------------------ F( 3, 404) = 23.77 Model | 57.8903644 3 19.2967881 Prob > F = 0.0000 Residual | 327.906027 404 .811648583 R-squared = 0.1501 -------------+------------------------------ Adj R-squared = 0.1437 Total | 385.796392 407 .947902683 Root MSE = .90092 ------------------------------------------------------------------------------ job | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- fem | -.1769641 .0915984 -1.93 0.054 -.3570331 .003105 phd | .3307536 .0495896 6.67 0.000 .2332678 .4282395 ment | .0015841 .0007207 2.20 0.029 .0001673 .0030009 _cons | 1.171768 .1635376 7.17 0.000 .8502769 1.493259 ------------------------------------------------------------------------------ (est1 stored) . eststo: regress job fem phd ment fel art cit Source | SS df MS Number of obs = 408 -------------+------------------------------ F( 6, 401) = 17.78 Model | 81.0584763 6 13.5097461 Prob > F = 0.0000 Residual | 304.737915 401 .759944926 R-squared = 0.2101 -------------+------------------------------ Adj R-squared = 0.1983 Total | 385.796392 407 .947902683 Root MSE = .87175 ------------------------------------------------------------------------------ job | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- fem | -.1391939 .0902344 -1.54 0.124 -.3165856 .0381977 phd | .2726826 .0493183 5.53 0.000 .1757278 .3696375 ment | .0011867 .0007012 1.69 0.091 -.0001917 .0025651 fel | .2341384 .0948206 2.47 0.014 .0477308 .4205461 art | .0228011 .0288843 0.79 0.430 -.0339824 .0795846 cit | .0044788 .0019687 2.28 0.023 .0006087 .008349 _cons | 1.067184 .1661357 6.42 0.000 .7405785 1.39379 ------------------------------------------------------------------------------ (est2 stored) . estadd fitstat, bic: * . esttab, cells(none) scalars(aic0 aic_n bic0 bic_p) -------------------------------------- (1) (2) job job -------------------------------------- N 408 408 aic0 2.639 2.580 aic_n 1076.7 1052.8 bic0 -1359.9 -1371.7 bic_p -48.30 -60.16 -------------------------------------- . eststo clear
A key difference between the two approaches is that with the first method output from estadd fitstat is displayed, whereas execution with the second syntax is silent.
The default for estadd prchange is to return a matrix called e(dc) containing the 0 to 1 change effects for binary variables and the standard deviation change effects for continuous variables in the first row, followed by additional rows containing separate results for the different effect types computed by prchange. To tabulate the contents of the first row simply refer to dc in esttab or estout. Example:
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly logit lfp k5 k618 age wc hc lwg inc, nolog . estadd prchange logit: Changes in Probabilities for lfp min->max 0->1 -+1/2 -+sd/2 MargEfct k5 -0.6361 -0.3499 -0.3428 -0.1849 -0.3569 k618 -0.1278 -0.0156 -0.0158 -0.0208 -0.0158 age -0.4372 -0.0030 -0.0153 -0.1232 -0.0153 wc 0.1881 0.1881 0.1945 0.0884 0.1969 hc 0.0272 0.0272 0.0273 0.0133 0.0273 lwg 0.6624 0.1499 0.1465 0.0865 0.1475 inc -0.6415 -0.0068 -0.0084 -0.0975 -0.0084 NotInLF inLF Pr(y|x) 0.4222 0.5778 k5 k618 age wc hc lwg inc x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129 sd_x= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348 added scalars: e(predval) = .57779419 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 7 (main, min->max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 7 e(X) : 4 x 7 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . esttab, aux(dc) nopar wide ----------------------------------------- (1) lfp ----------------------------------------- lfp k5 -1.463*** -0.185 k618 -0.0646 -0.0208 age -0.0629*** -0.123 wc 0.807*** 0.188 hc 0.112 0.0272 lwg 0.605*** 0.0865 inc -0.0344*** -0.0975 _cons 3.182*** ----------------------------------------- N 753 ----------------------------------------- dc in second column * p<0.05, ** p<0.01, *** p<0.001
To change the defaults for the contents of the first row of e(dc) use the c() option (for continuous variables) and the b() option (for binary variables). For example, to tabulate the marginal effects for continuous variables and the 0 to 1 change effects for binary variables (see the helpfile for the list of available effects types), type:
. estadd prchange, c(margefct) replace logit: Changes in Probabilities for lfp min->max 0->1 -+1/2 -+sd/2 MargEfct k5 -0.6361 -0.3499 -0.3428 -0.1849 -0.3569 k618 -0.1278 -0.0156 -0.0158 -0.0208 -0.0158 age -0.4372 -0.0030 -0.0153 -0.1232 -0.0153 wc 0.1881 0.1881 0.1945 0.0884 0.1969 hc 0.0272 0.0272 0.0273 0.0133 0.0273 lwg 0.6624 0.1499 0.1465 0.0865 0.1475 inc -0.6415 -0.0068 -0.0084 -0.0975 -0.0084 NotInLF inLF Pr(y|x) 0.4222 0.5778 k5 k618 age wc hc lwg inc x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129 sd_x= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348 added scalars: e(predval) = .57779419 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 7 (main, min->max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 7 e(X) : 4 x 7 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables margefct for continuous variables . esttab, aux(dc) nopar wide ----------------------------------------- (1) lfp ----------------------------------------- lfp k5 -1.463*** -0.357 k618 -0.0646 -0.0158 age -0.0629*** -0.0153 wc 0.807*** 0.188 hc 0.112 0.0272 lwg 0.605*** 0.148 inc -0.0344*** -0.00840 _cons 3.182*** ----------------------------------------- N 753 ----------------------------------------- dc in second column * p<0.05, ** p<0.01, *** p<0.001
Alternatively, if you want to tabulate the different effect types computed by prchange separately, address the rows in e(dc) using dc[#] where # is the row number or dc[name] where name is the row name. Example:
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly logit lfp k5 k618 age wc hc lwg inc, nolog . estadd prchange logit: Changes in Probabilities for lfp min->max 0->1 -+1/2 -+sd/2 MargEfct k5 -0.6361 -0.3499 -0.3428 -0.1849 -0.3569 k618 -0.1278 -0.0156 -0.0158 -0.0208 -0.0158 age -0.4372 -0.0030 -0.0153 -0.1232 -0.0153 wc 0.1881 0.1881 0.1945 0.0884 0.1969 hc 0.0272 0.0272 0.0273 0.0133 0.0273 lwg 0.6624 0.1499 0.1465 0.0865 0.1475 inc -0.6415 -0.0068 -0.0084 -0.0975 -0.0084 NotInLF inLF Pr(y|x) 0.4222 0.5778 k5 k618 age wc hc lwg inc x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129 sd_x= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348 added scalars: e(predval) = .57779419 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 7 (main, min->max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 7 e(X) : 4 x 7 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . esttab, cells("dc[2] dc[3] dc[4] dc[5] dc[6]") ----------------------------------------------------------------------------- (1) lfp dc[2] dc[3] dc[4] dc[5] dc[6] ----------------------------------------------------------------------------- k5 -.6360998 -.3498737 -.3427888 -.1848925 -.3568748 k618 -.1277862 -.0156047 -.0157506 -.0207876 -.0157519 age -.4372017 -.002954 -.015336 -.1231976 -.0153371 wc .1880592 .1880592 .1944887 .0884042 .1969329 hc .0271984 .0271984 .0272506 .0133135 .0272572 lwg .6624324 .1499499 .14648 .0864619 .1475137 inc -.6415044 -.0068042 -.008403 -.0974665 -.0084031 ----------------------------------------------------------------------------- N 753 ----------------------------------------------------------------------------- . esttab, cells("dc[min->max] dc[0->1] dc[-+1/2] dc[-+sd/2] dc[MargEfct]") ----------------------------------------------------------------------------- (1) lfp min->max 0->1 -+1/2 -+sd/2 MargEfct ----------------------------------------------------------------------------- k5 -.6360998 -.3498737 -.3427888 -.1848925 -.3568748 k618 -.1277862 -.0156047 -.0157506 -.0207876 -.0157519 age -.4372017 -.002954 -.015336 -.1231976 -.0153371 wc .1880592 .1880592 .1944887 .0884042 .1969329 hc .0271984 .0271984 .0272506 .0133135 .0272572 lwg .6624324 .1499499 .14648 .0864619 .1475137 inc -.6415044 -.0068042 -.008403 -.0974665 -.0084031 ----------------------------------------------------------------------------- N 753 -----------------------------------------------------------------------------
The procedure to prepare results from prvalue for tabulation is to first collect a series of predictions by repeated calls to estadd prvalue and then apply estadd prvalue post to rearrange results and post them in e(). Use the label() option to label the single predictions. Example:
. spex binlfp2 (Data from 1976 PSID-T Mroz) . logit lfp k5 k618 age wc hc lwg inc, nolog Logistic regression Number of obs = 753 LR chi2(7) = 124.48 Prob > chi2 = 0.0000 Log likelihood = -452.63296 Pseudo R2 = 0.1209 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -1.462913 .1970006 -7.43 0.000 -1.849027 -1.076799 k618 | -.0645707 .0680008 -0.95 0.342 -.1978499 .0687085 age | -.0628706 .0127831 -4.92 0.000 -.0879249 -.0378162 wc | .8072738 .2299799 3.51 0.000 .3565215 1.258026 hc | .1117336 .2060397 0.54 0.588 -.2920969 .515564 lwg | .6046931 .1508176 4.01 0.000 .3090961 .9002901 inc | -.0344464 .0082084 -4.20 0.000 -.0505346 -.0183583 _cons | 3.18214 .6443751 4.94 0.000 1.919188 4.445092 ------------------------------------------------------------------------------ . estadd prvalue, x(age=35 k5=2 wc=0 hc=0 inc=15) label(family type 1) logit: Predictions for lfp Confidence intervals by delta method 95% Conf. Interval Pr(y=inLF|x): 0.1318 [ 0.0556, 0.2081] Pr(y=NotInLF|x): 0.8682 [ 0.7919, 0.9444] k5 k618 age wc hc lwg x= 2 1.3532537 35 0 0 1.0971148 inc x= 15 added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . estadd prvalue, x(age=50 k5=0 k618=0 wc=1 hc=1) label(family type 2) logit: Predictions for lfp Confidence intervals by delta method 95% Conf. Interval Pr(y=inLF|x): 0.7166 [ 0.6333, 0.7999] Pr(y=NotInLF|x): 0.2834 [ 0.2001, 0.3667] k5 k618 age wc hc lwg x= 0 0 50 1 1 1.0971148 inc x= 20.128965 updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . estadd prvalue, label(average family) logit: Predictions for lfp Confidence intervals by delta method 95% Conf. Interval Pr(y=inLF|x): 0.5778 [ 0.5392, 0.6164] Pr(y=NotInLF|x): 0.4222 [ 0.3836, 0.4608] k5 k618 age wc hc lwg x= .2377158 1.3532537 42.537849 .2815405 .39176627 1.0971148 inc x= 20.128965 updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . estadd prvalue post scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "logit" e(properties) : "b" matrices: e(b) : 1 x 6 (predictions) e(se) : 1 x 6 (standard errors) e(LB) : 1 x 6 (lower CI bounds) e(UB) : 1 x 6 (upper CI bounds) e(Category) : 1 x 6 (outcome values) e(X) : 7 x 3 (k5, k618, age, wc, hc, lwg, inc) . esttab, ci wide nostar /// > keep(inLF:) eqlabels(none) varwidth(15) --------------------------------------------------- (1) lfp --------------------------------------------------- family type 1 0.132 [0.0556,0.208] family type 2 0.717 [0.633,0.800] average family 0.578 [0.539,0.616] --------------------------------------------------- N 753 --------------------------------------------------- 95% confidence intervals in brackets
The procedure for asprvalue is analogous (however, note that asprvalue does not provide standard errors or confidence intervals).
If you want to tabulate differences in predictions, first apply prvalue (or asprvalue) with the save option and then estadd prvalue (or estadd asprvalue) with the diff option. Example:
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly logit lfp k5 k618 age wc hc lwg inc, nolog . quietly prvalue, x(k5=0 wc=0) save . estadd prvalue, x(k5=0 wc=1) label(k5 = 0) brief diff logit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.7758 0.6069 0.1689 [ 0.0830, 0.2549] Pr(y=NotInLF|x): 0.2242 0.3931 -0.1689 [-0.2549, -0.0830] added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . quietly prvalue, x(k5=1 wc=0) save . estadd prvalue, x(k5=1 wc=1) label(k5 = 1) brief diff logit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.4449 0.2633 0.1815 [ 0.0763, 0.2868] Pr(y=NotInLF|x): 0.5551 0.7367 -0.1815 [-0.2868, -0.0763] updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . quietly prvalue, x(k5=2 wc=0) save . estadd prvalue, x(k5=2 wc=1) label(k5 = 2) brief diff logit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.1565 0.0764 0.0801 [ 0.0156, 0.1445] Pr(y=NotInLF|x): 0.8435 0.9236 -0.0801 [-0.1445, -0.0156] updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . estadd prvalue post scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "logit" e(properties) : "b" matrices: e(b) : 1 x 6 (predictions) e(se) : 1 x 6 (standard errors) e(LB) : 1 x 6 (lower CI bounds) e(UB) : 1 x 6 (upper CI bounds) e(Category) : 1 x 6 (outcome values) e(X) : 7 x 3 (k5, k618, age, wc, hc, lwg, inc) . esttab, keep(inLF:) ci wide nostar /// > mtitle("wc=1 - wc=0") ------------------------------------------------ (1) wc=1 - wc=0 ------------------------------------------------ inLF k5 = 0 0.169 [0.0830,0.255] k5 = 1 0.182 [0.0763,0.287] k5 = 2 0.0801 [0.0156,0.145] ------------------------------------------------ N 753 ------------------------------------------------ 95% confidence intervals in brackets
The confidence bounds computed by prvalue are saved by estadd prvalue post in e(LB) and e(UB). The following example illustrates how to tabulate these results:
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly logit lfp k5 k618 age wc hc lwg inc, nolog . estadd prvalue, x(age=35 k5=2 wc=0 hc=0 inc=15) /// > label(family type 1) bootstrap logit: Predictions for lfp Bootstrap confidence intervals using percentile method (1000 of 1000 replications completed) 95% Conf. Interval Pr(y=inLF|x): 0.1318 [ 0.0629, 0.2220] Pr(y=NotInLF|x): 0.8682 [ 0.7780, 0.9371] k5 k618 age wc hc lwg x= 2 1.3532537 35 0 0 1.0971148 inc x= 15 added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . estadd prvalue, x(age=50 k5=0 k618=0 wc=1 hc=1) /// > label(family type 2) bootstrap logit: Predictions for lfp Bootstrap confidence intervals using percentile method (1000 of 1000 replications completed) 95% Conf. Interval Pr(y=inLF|x): 0.7166 [ 0.6305, 0.7994] Pr(y=NotInLF|x): 0.2834 [ 0.2006, 0.3695] k5 k618 age wc hc lwg x= 0 0 50 1 1 1.0971148 inc x= 20.128965 updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . estadd prvalue, label(average family) bootstrap logit: Predictions for lfp Bootstrap confidence intervals using percentile method (1000 of 1000 replications completed) 95% Conf. Interval Pr(y=inLF|x): 0.5778 [ 0.5389, 0.6205] Pr(y=NotInLF|x): 0.4222 [ 0.3795, 0.4611] k5 k618 age wc hc lwg x= .2377158 1.3532537 42.537849 .2815405 .39176627 1.0971148 inc x= 20.128965 updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . estadd prvalue post scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "logit" e(properties) : "b" matrices: e(b) : 1 x 6 (predictions) e(se) : 1 x 6 (standard errors) e(LB) : 1 x 6 (lower CI bounds) e(UB) : 1 x 6 (upper CI bounds) e(Category) : 1 x 6 (outcome values) e(X) : 7 x 3 (k5, k618, age, wc, hc, lwg, inc) . esttab, cells("b LB UB") /// > keep(inLF:) eqlabels(none) varwidth(15) ------------------------------------------------------ (1) lfp b LB UB ------------------------------------------------------ family type 1 .1318369 .062898 .2219745 family type 2 .7166017 .6304579 .7994323 average family .5777942 .5389454 .6205298 ------------------------------------------------------ N 753 ------------------------------------------------------
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly logit lfp k5 k618 age wc hc lwg inc, nolog . estadd fitstat Measures of Fit for logit of lfp Log-Lik Intercept Only: -514.873 Log-Lik Full Model: -452.633 D(745): 905.266 LR(7): 124.480 Prob > LR: 0.000 McFadden's R2: 0.121 McFadden's Adj R2: 0.105 ML (Cox-Snell) R2: 0.152 Cragg-Uhler(Nagelkerke) R2: 0.204 McKelvey & Zavoina's R2: 0.217 Efron's R2: 0.155 Variance of y*: 4.203 Variance of error: 3.290 Count R2: 0.693 Adj Count R2: 0.289 AIC: 1.223 AIC*n: 921.266 BIC: -4029.663 BIC': -78.112 BIC used by Stata: 958.258 AIC used by Stata: 921.266 added scalars: e(dev) = 905.26592 e(dev_df) = 745 e(lrx2) = 124.48049 e(lrx2_df) = 7 e(lrx2_p) = 8.923e-24 e(r2_mf) = .12088461 e(r2_mfadj) = .1053468 e(r2_ml) = .15237143 e(r2_cu) = .20445312 e(r2_mz) = .2171939 e(r2_ef) = .15493519 e(v_ystar) = 4.2026603 e(v_error) = 3.2898681 e(r2_ct) = .69322709 e(r2_ctadj) = .28923077 e(aic0) = 1.2234607 e(aic_n) = 921.26592 e(bic0) = -4029.6627 e(bic_p) = -78.112037 e(statabic) = 958.25844 e(stataaic) = 921.26592 e(n_rhs) = 7 e(n_parm) = 8 . eststo logit . quietly probit lfp k5 k618 age wc hc lwg inc, nolog . estadd fitstat Measures of Fit for probit of lfp Log-Lik Intercept Only: -514.873 Log-Lik Full Model: -452.695 D(745): 905.390 LR(7): 124.356 Prob > LR: 0.000 McFadden's R2: 0.121 McFadden's Adj R2: 0.105 ML (Cox-Snell) R2: 0.152 Cragg-Uhler(Nagelkerke) R2: 0.204 McKelvey & Zavoina's R2: 0.247 Efron's R2: 0.154 Variance of y*: 1.328 Variance of error: 1.000 Count R2: 0.687 Adj Count R2: 0.274 AIC: 1.224 AIC*n: 921.390 BIC: -4029.539 BIC': -77.988 BIC used by Stata: 958.382 AIC used by Stata: 921.390 added scalars: e(dev) = 905.38993 e(dev_df) = 745 e(lrx2) = 124.35648 e(lrx2_df) = 7 e(lrx2_p) = 9.471e-24 e(r2_mf) = .12076418 e(r2_mfadj) = .10522638 e(r2_ml) = .15223182 e(r2_cu) = .2042658 e(r2_mz) = .24703499 e(r2_ef) = .15420358 e(v_ystar) = 1.328083 e(v_error) = 1 e(r2_ct) = .68658699 e(r2_ctadj) = .27384615 e(aic0) = 1.2236254 e(aic_n) = 921.38993 e(bic0) = -4029.5387 e(bic_p) = -77.988025 e(statabic) = 958.38245 e(stataaic) = 921.38993 e(n_rhs) = 7 e(n_parm) = 8 . eststo probit . esttab, scalars(r2_mf r2_mfadj r2_ml r2_cu) wide mtitles ---------------------------------------------------------------------- (1) (2) logit probit ---------------------------------------------------------------------- lfp k5 -1.463*** (-7.43) -0.875*** (-7.70) k618 -0.0646 (-0.95) -0.0386 (-0.95) age -0.0629*** (-4.92) -0.0378*** (-4.97) wc 0.807*** (3.51) 0.488*** (3.60) hc 0.112 (0.54) 0.0572 (0.46) lwg 0.605*** (4.01) 0.366*** (4.17) inc -0.0344*** (-4.20) -0.0205*** (-4.30) _cons 3.182*** (4.94) 1.918*** (5.04) ---------------------------------------------------------------------- N 753 753 r2_mf 0.121 0.121 r2_mfadj 0.105 0.105 r2_ml 0.152 0.152 r2_cu 0.204 0.204 ---------------------------------------------------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly logit lfp k5 k618 age wc hc lwg inc, nolog . estadd listcoef, std logit (N=753): Unstandardized and Standardized Estimates Observed SD: .49562951 Latent SD: 2.0500391 Odds of: inLF vs NotInLF ------------------------------------------------------------------------------- lfp | b z P>|z| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- k5 | -1.46291 -7.426 0.000 -0.7665 -0.7136 -0.3739 0.5240 k618 | -0.06457 -0.950 0.342 -0.0852 -0.0315 -0.0416 1.3199 age | -0.06287 -4.918 0.000 -0.5075 -0.0307 -0.2476 8.0726 wc | 0.80727 3.510 0.000 0.3633 0.3938 0.1772 0.4500 hc | 0.11173 0.542 0.588 0.0546 0.0545 0.0266 0.4885 lwg | 0.60469 4.009 0.000 0.3553 0.2950 0.1733 0.5876 inc | -0.03445 -4.196 0.000 -0.4008 -0.0168 -0.1955 11.6348 ------------------------------------------------------------------------------- added matrices: e(b_xs) : 1 x 7 (bStdX) e(b_ys) : 1 x 7 (bStdY) e(b_std) : 1 x 7 (bStdXY) e(b_sdx) : 1 x 7 (SDofX) . eststo logit . quietly probit lfp k5 k618 age wc hc lwg inc, nolog . estadd listcoef probit (N=753): Unstandardized and Standardized Estimates Observed SD: .49562951 Latent SD: 1.1524248 ------------------------------------------------------------------------------- lfp | b z P>|z| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- k5 | -0.87471 -7.703 0.000 -0.4583 -0.7590 -0.3977 0.5240 k618 | -0.03859 -0.953 0.340 -0.0509 -0.0335 -0.0442 1.3199 age | -0.03782 -4.971 0.000 -0.3053 -0.0328 -0.2649 8.0726 wc | 0.48831 3.604 0.000 0.2198 0.4237 0.1907 0.4500 hc | 0.05717 0.461 0.645 0.0279 0.0496 0.0242 0.4885 lwg | 0.36563 4.165 0.000 0.2148 0.3173 0.1864 0.5876 inc | -0.02053 -4.297 0.000 -0.2388 -0.0178 -0.2072 11.6348 ------------------------------------------------------------------------------- added matrices: e(b_xs) : 1 x 7 (bStdX) e(b_ys) : 1 x 7 (bStdY) e(b_std) : 1 x 7 (bStdXY) e(b_sdx) : 1 x 7 (SDofX) . eststo probit . esttab, aux(b_std) nopar wide mtitles ---------------------------------------------------------------------- (1) (2) logit probit ---------------------------------------------------------------------- lfp k5 -1.463*** -0.374 -0.875*** -0.398 k618 -0.0646 -0.0416 -0.0386 -0.0442 age -0.0629*** -0.248 -0.0378*** -0.265 wc 0.807*** 0.177 0.488*** 0.191 hc 0.112 0.0266 0.0572 0.0242 lwg 0.605*** 0.173 0.366*** 0.186 inc -0.0344*** -0.195 -0.0205*** -0.207 _cons 3.182*** 1.918*** ---------------------------------------------------------------------- N 753 753 ---------------------------------------------------------------------- b_std in second column * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly logit lfp k5 k618 age wc hc lwg inc, nolog . estadd listcoef, quietly std added matrices: e(b_xs) : 1 x 7 (bStdX) e(b_ys) : 1 x 7 (bStdY) e(b_std) : 1 x 7 (bStdXY) e(b_sdx) : 1 x 7 (SDofX) . estadd listcoef, quietly fact nosd added matrices: e(b_fact) : 1 x 7 (e^b) e(b_facts) : 1 x 7 (e^bStdX) . estadd listcoef, quietly per nosd added matrices: e(b_pct) : 1 x 7 (%) e(b_pcts) : 1 x 7 (%StdX) . esttab, cell("b_std b_facts b_pcts b_sdx") ---------------------------------------------------------------- (1) lfp b_std b_facts b_pcts b_sdx ---------------------------------------------------------------- k5 -.3738985 .4646334 -53.53666 .523959 k618 -.0415725 .9183055 -8.169451 1.319874 age -.2475695 .6019823 -39.80177 8.072574 wc .1772225 1.438086 43.8086 .4500494 hc .0266231 1.056095 5.60953 .4884694 lwg .1733095 1.426596 42.65962 .5875564 inc -.1954974 .6697992 -33.02008 11.6348 ---------------------------------------------------------------- N 753 ----------------------------------------------------------------
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly logit lfp k5 k618 age wc hc lwg inc, nolog . estadd prchange logit: Changes in Probabilities for lfp min->max 0->1 -+1/2 -+sd/2 MargEfct k5 -0.6361 -0.3499 -0.3428 -0.1849 -0.3569 k618 -0.1278 -0.0156 -0.0158 -0.0208 -0.0158 age -0.4372 -0.0030 -0.0153 -0.1232 -0.0153 wc 0.1881 0.1881 0.1945 0.0884 0.1969 hc 0.0272 0.0272 0.0273 0.0133 0.0273 lwg 0.6624 0.1499 0.1465 0.0865 0.1475 inc -0.6415 -0.0068 -0.0084 -0.0975 -0.0084 NotInLF inLF Pr(y|x) 0.4222 0.5778 k5 k618 age wc hc lwg inc x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129 sd_x= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348 added scalars: e(predval) = .57779419 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 7 (main, min->max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 7 e(X) : 4 x 7 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . eststo logit . quietly probit lfp k5 k618 age wc hc lwg inc, nolog . estadd prchange probit: Changes in Probabilities for lfp min->max 0->1 -+1/2 -+sd/2 MargEfct k5 -0.6441 -0.3380 -0.3320 -0.1778 -0.3422 k618 -0.1221 -0.0150 -0.0151 -0.0199 -0.0151 age -0.4274 -0.0031 -0.0148 -0.1190 -0.0148 wc 0.1844 0.1844 0.1892 0.0858 0.1911 hc 0.0223 0.0223 0.0224 0.0109 0.0224 lwg 0.6649 0.1450 0.1423 0.0839 0.1431 inc -0.6425 -0.0068 -0.0080 -0.0932 -0.0080 NotInLF inLF Pr(y|x) 0.4218 0.5782 k5 k618 age wc hc lwg inc x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129 sd_x= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348 added scalars: e(predval) = .57816368 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 7 (main, min->max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 7 e(X) : 4 x 7 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . eststo probit . esttab, aux(dc) nopar wide mtitles ---------------------------------------------------------------------- (1) (2) logit probit ---------------------------------------------------------------------- lfp k5 -1.463*** -0.185 -0.875*** -0.178 k618 -0.0646 -0.0208 -0.0386 -0.0199 age -0.0629*** -0.123 -0.0378*** -0.119 wc 0.807*** 0.188 0.488*** 0.184 hc 0.112 0.0272 0.0572 0.0223 lwg 0.605*** 0.0865 0.366*** 0.0839 inc -0.0344*** -0.0975 -0.0205*** -0.0932 _cons 3.182*** 1.918*** ---------------------------------------------------------------------- N 753 753 ---------------------------------------------------------------------- dc in second column * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly logit lfp k5 k618 age wc hc lwg inc, nolog . estadd prvalue, x(k5=0 wc=0) label(k5 = 0) brief logit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.6069 [ 0.5567, 0.6570] Pr(y=NotInLF|x): 0.3931 [ 0.3430, 0.4433] added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . estadd prvalue, x(k5=1 wc=0) label(k5 = 1) brief logit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.2633 [ 0.1932, 0.3335] Pr(y=NotInLF|x): 0.7367 [ 0.6665, 0.8068] updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . estadd prvalue, x(k5=2 wc=0) label(k5 = 2) brief logit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.0764 [ 0.0258, 0.1271] Pr(y=NotInLF|x): 0.9236 [ 0.8729, 0.9742] updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . estadd prvalue, x(k5=3 wc=0) label(k5 = 3) brief logit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.0188 [-0.0014, 0.0390] Pr(y=NotInLF|x): 0.9812 [ 0.9610, 1.0014] updated matrices: e(_estadd_prvalue) : 4 x 12 e(_estadd_prvalue_x) : 4 x 7 . estadd prvalue post NoCollege scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "logit" e(properties) : "b" matrices: e(b) : 1 x 8 (predictions) e(se) : 1 x 8 (standard errors) e(LB) : 1 x 8 (lower CI bounds) e(UB) : 1 x 8 (upper CI bounds) e(Category) : 1 x 8 (outcome values) e(X) : 7 x 4 (k5, k618, age, wc, hc, lwg, inc) results stored as NoCollege . estadd prvalue, x(k5=0 wc=1) label(k5 = 0) brief replace logit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.7758 [ 0.7077, 0.8439] Pr(y=NotInLF|x): 0.2242 [ 0.1561, 0.2923] added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . estadd prvalue, x(k5=1 wc=1) label(k5 = 1) brief logit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.4449 [ 0.3331, 0.5567] Pr(y=NotInLF|x): 0.5551 [ 0.4433, 0.6669] updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . estadd prvalue, x(k5=2 wc=1) label(k5 = 2) brief logit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.1565 [ 0.0582, 0.2548] Pr(y=NotInLF|x): 0.8435 [ 0.7452, 0.9418] updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . estadd prvalue, x(k5=3 wc=1) label(k5 = 3) brief logit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.0412 [-0.0021, 0.0845] Pr(y=NotInLF|x): 0.9588 [ 0.9155, 1.0021] updated matrices: e(_estadd_prvalue) : 4 x 12 e(_estadd_prvalue_x) : 4 x 7 . estadd prvalue post College scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "logit" e(properties) : "b" matrices: e(b) : 1 x 8 (predictions) e(se) : 1 x 8 (standard errors) e(LB) : 1 x 8 (lower CI bounds) e(UB) : 1 x 8 (upper CI bounds) e(Category) : 1 x 8 (outcome values) e(X) : 7 x 4 (k5, k618, age, wc, hc, lwg, inc) results stored as College . quietly prvalue, x(k5=0 wc=0) save . estadd prvalue, x(k5=0 wc=1) label(k5 = 0) brief diff replace logit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.7758 0.6069 0.1689 [ 0.0830, 0.2549] Pr(y=NotInLF|x): 0.2242 0.3931 -0.1689 [-0.2549, -0.0830] added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . quietly prvalue, x(k5=1 wc=0) save . estadd prvalue, x(k5=1 wc=1) label(k5 = 1) brief diff logit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.4449 0.2633 0.1815 [ 0.0763, 0.2868] Pr(y=NotInLF|x): 0.5551 0.7367 -0.1815 [-0.2868, -0.0763] updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . quietly prvalue, x(k5=2 wc=0) save . estadd prvalue, x(k5=2 wc=1) label(k5 = 2) brief diff logit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.1565 0.0764 0.0801 [ 0.0156, 0.1445] Pr(y=NotInLF|x): 0.8435 0.9236 -0.0801 [-0.1445, -0.0156] updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . quietly prvalue, x(k5=3 wc=0) save . estadd prvalue, x(k5=3 wc=1) label(k5 = 3) brief diff logit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.0412 0.0188 0.0224 [-0.0037, 0.0485] Pr(y=NotInLF|x): 0.9588 0.9812 -0.0224 [-0.0485, 0.0037] updated matrices: e(_estadd_prvalue) : 4 x 12 e(_estadd_prvalue_x) : 4 x 7 . estadd prvalue post Difference scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "logit" e(properties) : "b" matrices: e(b) : 1 x 8 (predictions) e(se) : 1 x 8 (standard errors) e(LB) : 1 x 8 (lower CI bounds) e(UB) : 1 x 8 (upper CI bounds) e(Category) : 1 x 8 (outcome values) e(X) : 7 x 4 (k5, k618, age, wc, hc, lwg, inc) results stored as Difference . esttab, se nostar nonumber noobs mtitles /// > keep(inLF:) eqlabels(none) --------------------------------------------------- NoCollege College Difference --------------------------------------------------- k5 = 0 0.607 0.776 0.169 (0.0256) (0.0348) (0.0439) k5 = 1 0.263 0.445 0.182 (0.0358) (0.0570) (0.0537) k5 = 2 0.0764 0.157 0.0801 (0.0259) (0.0502) (0.0329) k5 = 3 0.0188 0.0412 0.0224 (0.0103) (0.0221) (0.0133) --------------------------------------------------- Standard errors in parentheses . eststo clear
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly probit lfp k5 k618 age wc hc lwg inc, nolog . estadd prvalue, x(k5=0 wc=0) label(k5 = 0) brief probit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.6055 [ 0.5563, 0.6547] Pr(y=NotInLF|x): 0.3945 [ 0.3453, 0.4437] added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . estadd prvalue, x(k5=1 wc=0) label(k5 = 1) brief probit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.2719 [ 0.2017, 0.3421] Pr(y=NotInLF|x): 0.7281 [ 0.6579, 0.7983] updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . estadd prvalue, x(k5=2 wc=0) label(k5 = 2) brief probit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.0692 [ 0.0140, 0.1244] Pr(y=NotInLF|x): 0.9308 [ 0.8756, 0.9860] updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . estadd prvalue, x(k5=3 wc=0) label(k5 = 3) brief probit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.0092 [-0.0065, 0.0249] Pr(y=NotInLF|x): 0.9908 [ 0.9751, 1.0065] updated matrices: e(_estadd_prvalue) : 4 x 12 e(_estadd_prvalue_x) : 4 x 7 . estadd prvalue post NoCollege scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "probit" e(properties) : "b" matrices: e(b) : 1 x 8 (predictions) e(se) : 1 x 8 (standard errors) e(LB) : 1 x 8 (lower CI bounds) e(UB) : 1 x 8 (upper CI bounds) e(Category) : 1 x 8 (outcome values) e(X) : 7 x 4 (k5, k618, age, wc, hc, lwg, inc) results stored as NoCollege . estadd prvalue, x(k5=0 wc=1) label(k5 = 0) brief replace probit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.7752 [ 0.7070, 0.8434] Pr(y=NotInLF|x): 0.2248 [ 0.1566, 0.2930] added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . estadd prvalue, x(k5=1 wc=1) label(k5 = 1) brief probit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.4527 [ 0.3477, 0.5578] Pr(y=NotInLF|x): 0.5473 [ 0.4422, 0.6523] updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . estadd prvalue, x(k5=2 wc=1) label(k5 = 2) brief probit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.1602 [ 0.0547, 0.2658] Pr(y=NotInLF|x): 0.8398 [ 0.7342, 0.9453] updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . estadd prvalue, x(k5=3 wc=1) label(k5 = 3) brief probit: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.0309 [-0.0135, 0.0752] Pr(y=NotInLF|x): 0.9691 [ 0.9248, 1.0135] updated matrices: e(_estadd_prvalue) : 4 x 12 e(_estadd_prvalue_x) : 4 x 7 . estadd prvalue post College scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "probit" e(properties) : "b" matrices: e(b) : 1 x 8 (predictions) e(se) : 1 x 8 (standard errors) e(LB) : 1 x 8 (lower CI bounds) e(UB) : 1 x 8 (upper CI bounds) e(Category) : 1 x 8 (outcome values) e(X) : 7 x 4 (k5, k618, age, wc, hc, lwg, inc) results stored as College . quietly prvalue, x(k5=0 wc=0) save . estadd prvalue, x(k5=0 wc=1) label(k5 = 0) brief diff replace probit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.7752 0.6055 0.1696 [ 0.0839, 0.2554] Pr(y=NotInLF|x): 0.2248 0.3945 -0.1696 [-0.2554, -0.0839] added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . quietly prvalue, x(k5=1 wc=0) save . estadd prvalue, x(k5=1 wc=1) label(k5 = 1) brief diff probit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.4527 0.2719 0.1808 [ 0.0803, 0.2814] Pr(y=NotInLF|x): 0.5473 0.7281 -0.1808 [-0.2814, -0.0803] updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . quietly prvalue, x(k5=2 wc=0) save . estadd prvalue, x(k5=2 wc=1) label(k5 = 2) brief diff probit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.1602 0.0692 0.0910 [ 0.0217, 0.1604] Pr(y=NotInLF|x): 0.8398 0.9308 -0.0910 [-0.1604, -0.0217] updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . quietly prvalue, x(k5=3 wc=0) save . estadd prvalue, x(k5=3 wc=1) label(k5 = 3) brief diff probit: Change in Predictions for lfp Current Saved Change 95% CI for Change Pr(y=inLF|x): 0.0309 0.0092 0.0216 [-0.0090, 0.0523] Pr(y=NotInLF|x): 0.9691 0.9908 -0.0216 [-0.0523, 0.0090] updated matrices: e(_estadd_prvalue) : 4 x 12 e(_estadd_prvalue_x) : 4 x 7 . estadd prvalue post Difference scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "probit" e(properties) : "b" matrices: e(b) : 1 x 8 (predictions) e(se) : 1 x 8 (standard errors) e(LB) : 1 x 8 (lower CI bounds) e(UB) : 1 x 8 (upper CI bounds) e(Category) : 1 x 8 (outcome values) e(X) : 7 x 4 (k5, k618, age, wc, hc, lwg, inc) results stored as Difference . esttab, se nostar nonumber noobs mtitles /// > keep(inLF:) eqlabels(none) --------------------------------------------------- NoCollege College Difference --------------------------------------------------- k5 = 0 0.606 0.775 0.170 (0.0251) (0.0348) (0.0437) k5 = 1 0.272 0.453 0.181 (0.0358) (0.0536) (0.0513) k5 = 2 0.0692 0.160 0.0910 (0.0282) (0.0539) (0.0354) k5 = 3 0.00922 0.0309 0.0216 (0.00800) (0.0226) (0.0157) --------------------------------------------------- Standard errors in parentheses . eststo clear
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly cloglog lfp k5 k618 age wc hc lwg inc, nolog . estadd fitstat Measures of Fit for cloglog of lfp Log-Lik Intercept Only: -514.873 Log-Lik Full Model: -448.471 D(745): 896.943 LR(7): 132.804 Prob > LR: 0.000 McFadden's R2: 0.129 McFadden's Adj R2: 0.113 ML (Cox-Snell) R2: 0.162 Cragg-Uhler(Nagelkerke) R2: 0.217 Efron's R2: 0.160 Count R2: 0.687 Adj Count R2: 0.274 AIC: 1.212 AIC*n: 912.943 BIC: -4037.986 BIC': -86.435 BIC used by Stata: 949.935 AIC used by Stata: 912.943 added scalars: e(dev) = 896.9429 e(dev_df) = 745 e(lrx2) = 132.80351 e(lrx2_df) = 7 e(lrx2_p) = 1.631e-25 e(r2_mf) = .1289672 e(r2_mfadj) = .11342939 e(r2_ml) = .16168879 e(r2_cu) = .21695524 e(r2_ef) = .15960051 e(r2_ct) = .68658699 e(r2_ctadj) = .27384615 e(aic0) = 1.2124076 e(aic_n) = 912.9429 e(bic0) = -4037.9857 e(bic_p) = -86.435051 e(statabic) = 949.93542 e(stataaic) = 912.9429 e(n_rhs) = 7 e(n_parm) = 8 . estadd listcoef cloglog (N=753): Unstandardized and Standardized Estimates Observed SD: .49562951 ------------------------------------------------------------- lfp | b z P>|z| bStdX SDofX -------------+----------------------------------------------- k5 | -1.00288 -7.101 0.000 -0.5255 0.5240 k618 | -0.05225 -1.197 0.231 -0.0690 1.3199 age | -0.04036 -5.047 0.000 -0.3258 8.0726 wc | 0.41893 2.877 0.004 0.1885 0.4500 hc | 0.05546 0.408 0.683 0.0271 0.4885 lwg | 0.58236 4.781 0.000 0.3422 0.5876 inc | -0.02493 -4.157 0.000 -0.2900 11.6348 ------------------------------------------------------------- added matrices: e(b_xs) : 1 x 7 (bStdX) e(b_sdx) : 1 x 7 (SDofX) . esttab, cell("b b_xs b_sdx") scalars(r2_mf r2_mfadj r2_ml r2_cu) --------------------------------------------------- (1) lfp b b_xs b_sdx --------------------------------------------------- lfp k5 -1.002878 -.525467 .523959 k618 -.0522477 -.0689604 1.319874 age -.0403616 -.3258222 8.072574 wc .4189326 .1885404 .4500494 hc .0554553 .0270882 .4884694 lwg .5823638 .3421716 .5875564 inc -.0249275 -.2900264 11.6348 _cons 1.554071 --------------------------------------------------- N 753 r2_mf 0.129 r2_mfadj 0.113 r2_ml 0.162 r2_cu 0.217 ---------------------------------------------------
. spex binlfp2 (Data from 1976 PSID-T Mroz) . quietly cloglog lfp k5 k618 age wc hc lwg inc, nolog . estadd prvalue, x(age=35 k5=2 wc=0 hc=0 inc=15) /// > label(family type 1) brief cloglog: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.1716 [ 0.0931, 0.2500] Pr(y=NotInLF|x): 0.8284 [ 0.7500, 0.9069] added matrices: e(_estadd_prvalue) : 1 x 12 e(_estadd_prvalue_x) : 1 x 7 . estadd prvalue, x(age=50 k5=0 k618=0 wc=1 hc=1) /// > label(family type 2) brief cloglog: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.6862 [ 0.5920, 0.7803] Pr(y=NotInLF|x): 0.3138 [ 0.2197, 0.4080] updated matrices: e(_estadd_prvalue) : 2 x 12 e(_estadd_prvalue_x) : 2 x 7 . estadd prvalue, label(average family) brief cloglog: Predictions for lfp 95% Conf. Interval Pr(y=inLF|x): 0.5608 [ 0.5225, 0.5991] Pr(y=NotInLF|x): 0.4392 [ 0.4009, 0.4775] updated matrices: e(_estadd_prvalue) : 3 x 12 e(_estadd_prvalue_x) : 3 x 7 . estadd prvalue post scalars: e(N) = 753 macros: e(depvar) : "lfp" e(cmd) : "estadd_prvalue" e(model) : "cloglog" e(properties) : "b" matrices: e(b) : 1 x 6 (predictions) e(se) : 1 x 6 (standard errors) e(LB) : 1 x 6 (lower CI bounds) e(UB) : 1 x 6 (upper CI bounds) e(Category) : 1 x 6 (outcome values) e(X) : 7 x 3 (k5, k618, age, wc, hc, lwg, inc) . esttab, ci wide nostar /// > keep(inLF:) eqlabels(none) varwidth(15) --------------------------------------------------- (1) lfp --------------------------------------------------- family type 1 0.172 [0.0931,0.250] family type 2 0.686 [0.592,0.780] average family 0.561 [0.522,0.599] --------------------------------------------------- N 753 --------------------------------------------------- 95% confidence intervals in brackets
. spex ordwarm2 (77 & 89 General Social Survey) . quietly ologit warm yr89 male white age ed prst . estadd brant Brant Test of Parallel Regression Assumption Variable | chi2 p>chi2 df -------------+-------------------------- All | 49.18 0.000 12 -------------+-------------------------- yr89 | 13.01 0.001 2 male | 22.24 0.000 2 white | 1.27 0.531 2 age | 7.38 0.025 2 ed | 4.31 0.116 2 prst | 4.33 0.115 2 ---------------------------------------- A significant test statistic provides evidence that the parallel regression assumption has been violated. added scalars: e(brant_chi2) = 49.181219 e(brant_df) = 12 e(brant_p) = 1.944e-06 added matrix: e(brant) : 2 x 6 (chi2, p>chi2) . esttab, cell("b t brant[chi2] brant[p>chi2]") /// > scalars(brant_chi2 brant_df brant_p) /// > eqlabels(none) ---------------------------------------------------------------- (1) warm b t chi2 p>chi2 ---------------------------------------------------------------- yr89 .5239025 6.557071 13.01311 .0014936 male -.7332997 -9.343457 22.2379 .0000148 white -.3911595 -3.304247 1.267856 .530504 age -.0216655 -8.777619 7.383264 .0249313 ed .0671728 4.204878 4.310353 .1158828 prst .0060727 1.844178 4.331991 .1146358 cut1 -2.465362 -10.31909 cut2 -.630904 -2.70408 cut3 1.261854 5.392123 ---------------------------------------------------------------- N 2293 brant_chi2 49.18 brant_df 12 brant_p 0.00000194 ----------------------------------------------------------------
. spex ordwarm2 (77 & 89 General Social Survey) . quietly ologit warm yr89 male white age ed prst, nolog . estadd fitstat Measures of Fit for ologit of warm Log-Lik Intercept Only: -2995.770 Log-Lik Full Model: -2844.912 D(2284): 5689.825 LR(6): 301.716 Prob > LR: 0.000 McFadden's R2: 0.050 McFadden's Adj R2: 0.047 ML (Cox-Snell) R2: 0.123 Cragg-Uhler(Nagelkerke) R2: 0.133 McKelvey & Zavoina's R2: 0.127 Variance of y*: 3.768 Variance of error: 3.290 Count R2: 0.432 Adj Count R2: 0.093 AIC: 2.489 AIC*n: 5707.825 BIC: -11982.891 BIC': -255.291 BIC used by Stata: 5759.463 AIC used by Stata: 5707.825 added scalars: e(dev) = 5689.8246 e(dev_df) = 2284 e(lrx2) = 301.71628 e(lrx2_df) = 6 e(lrx2_p) = 3.508e-62 e(r2_mf) = .05035704 e(r2_mfadj) = .04735281 e(r2_ml) = .12329214 e(r2_cu) = .13304665 e(r2_mz) = .12682954 e(v_ystar) = 3.7677272 e(v_error) = 3.2898681 e(r2_ct) = .4317488 e(r2_ctadj) = .09324983 e(aic0) = 2.4892388 e(aic_n) = 5707.8246 e(bic0) = -11982.891 e(bic_p) = -255.29058 e(statabic) = 5759.4631 e(stataaic) = 5707.8246 e(n_rhs) = 6 e(n_parm) = 9 . eststo ologit . quietly oprobit warm yr89 male white age ed prst, nolog . estadd fitstat Measures of Fit for oprobit of warm Log-Lik Intercept Only: -2995.770 Log-Lik Full Model: -2848.611 D(2284): 5697.222 LR(6): 294.319 Prob > LR: 0.000 McFadden's R2: 0.049 McFadden's Adj R2: 0.046 ML (Cox-Snell) R2: 0.120 Cragg-Uhler(Nagelkerke) R2: 0.130 McKelvey & Zavoina's R2: 0.136 Variance of y*: 1.158 Variance of error: 1.000 Count R2: 0.429 Adj Count R2: 0.089 AIC: 2.492 AIC*n: 5715.222 BIC: -11975.494 BIC': -247.893 BIC used by Stata: 5766.861 AIC used by Stata: 5715.222 added scalars: e(dev) = 5697.222 e(dev_df) = 2284 e(lrx2) = 294.31886 e(lrx2_df) = 6 e(lrx2_p) = 1.349e-60 e(r2_mf) = .0491224 e(r2_mfadj) = .04611816 e(r2_ml) = .12045924 e(r2_cu) = .12998962 e(r2_mz) = .1363472 e(v_ystar) = 1.1578727 e(v_error) = 1 e(r2_ct) = .42913214 e(r2_ctadj) = .08907446 e(aic0) = 2.4924649 e(aic_n) = 5715.222 e(bic0) = -11975.494 e(bic_p) = -247.89316 e(statabic) = 5766.8605 e(stataaic) = 5715.222 e(n_rhs) = 6 e(n_parm) = 9 . eststo oprobit . esttab, scalars(r2_mf r2_mfadj r2_ml r2_cu) wide eqlabels(none) mtitles ---------------------------------------------------------------------- (1) (2) ologit oprobit ---------------------------------------------------------------------- yr89 0.524*** (6.56) 0.319*** (6.80) male -0.733*** (-9.34) -0.417*** (-9.16) white -0.391*** (-3.30) -0.227** (-3.26) age -0.0217*** (-8.78) -0.0122*** (-8.47) ed 0.0672*** (4.20) 0.0387*** (4.15) prst 0.00607 (1.84) 0.00328 (1.71) cut1 -2.465*** (-10.32) -1.429*** (-10.29) cut2 -0.631** (-2.70) -0.361** (-2.63) cut3 1.262*** (5.39) 0.768*** (5.60) ---------------------------------------------------------------------- N 2293 2293 r2_mf 0.0504 0.0491 r2_mfadj 0.0474 0.0461 r2_ml 0.123 0.120 r2_cu 0.133 0.130 ---------------------------------------------------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex ordwarm2 (77 & 89 General Social Survey) . quietly ologit warm yr89 male white age ed prst, nolog . estadd listcoef, std ologit (N=2293): Unstandardized and Standardized Estimates Observed SD: .9282156 Latent SD: 1.9410634 ------------------------------------------------------------------------------- warm | b z P>|z| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- yr89 | 0.52390 6.557 0.000 0.2566 0.2699 0.1322 0.4897 male | -0.73330 -9.343 0.000 -0.3658 -0.3778 -0.1885 0.4989 white | -0.39116 -3.304 0.001 -0.1287 -0.2015 -0.0663 0.3290 age | -0.02167 -8.778 0.000 -0.3635 -0.0112 -0.1873 16.7790 ed | 0.06717 4.205 0.000 0.2123 0.0346 0.1094 3.1608 prst | 0.00607 1.844 0.065 0.0880 0.0031 0.0453 14.4923 ------------------------------------------------------------------------------- added matrices: e(b_xs) : 1 x 6 (bStdX) e(b_ys) : 1 x 6 (bStdY) e(b_std) : 1 x 6 (bStdXY) e(b_sdx) : 1 x 6 (SDofX) . eststo ologit . quietly oprobit warm yr89 male white age ed prst, nolog . estadd listcoef oprobit (N=2293): Unstandardized and Standardized Estimates Observed SD: .9282156 Latent SD: 1.0760449 ------------------------------------------------------------------------------- warm | b z P>|z| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- yr89 | 0.31881 6.805 0.000 0.1561 0.2963 0.1451 0.4897 male | -0.41703 -9.156 0.000 -0.2080 -0.3876 -0.1933 0.4989 white | -0.22650 -3.260 0.001 -0.0745 -0.2105 -0.0693 0.3290 age | -0.01222 -8.471 0.000 -0.2051 -0.0114 -0.1906 16.7790 ed | 0.03872 4.153 0.000 0.1224 0.0360 0.1137 3.1608 prst | 0.00328 1.705 0.088 0.0476 0.0031 0.0442 14.4923 ------------------------------------------------------------------------------- added matrices: e(b_xs) : 1 x 6 (bStdX) e(b_ys) : 1 x 6 (bStdY) e(b_std) : 1 x 6 (bStdXY) e(b_sdx) : 1 x 6 (SDofX) . eststo oprobit . esttab, aux(b_std) nopar wide eqlabels(none) mtitles ---------------------------------------------------------------------- (1) (2) ologit oprobit ---------------------------------------------------------------------- yr89 0.524*** 0.132 0.319*** 0.145 male -0.733*** -0.188 -0.417*** -0.193 white -0.391*** -0.0663 -0.227** -0.0693 age -0.0217*** -0.187 -0.0122*** -0.191 ed 0.0672*** 0.109 0.0387*** 0.114 prst 0.00607 0.0453 0.00328 0.0442 cut1 -2.465*** -1.429*** cut2 -0.631** -0.361** cut3 1.262*** 0.768*** ---------------------------------------------------------------------- N 2293 2293 ---------------------------------------------------------------------- b_std in second column * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex ordwarm2 (77 & 89 General Social Survey) . eststo ologit: quietly ologit warm yr89 male white age ed prst, nolog . eststo oprobit: quietly oprobit warm yr89 male white age ed prst, nolog . estadd prchange male age prst: * . esttab, main(dc) nostar not mtitles -------------------------------------- (1) (2) ologit oprobit -------------------------------------- Avg|Chg| male 0.0896 0.0819 age 0.0447 0.0404 prst 0.0108 0.00938 -------------------------------------- 1SD male 0.0746 0.0810 age 0.0360 0.0390 prst -0.00870 -0.00905 -------------------------------------- 2D male 0.105 0.0827 age 0.0533 0.0417 prst -0.0130 -0.00972 -------------------------------------- 3A male -0.0814 -0.0622 age -0.0401 -0.0301 prst 0.00977 0.00702 -------------------------------------- 4SA male -0.0979 -0.101 age -0.0492 -0.0506 prst 0.0119 0.0117 -------------------------------------- N 2293 2293 -------------------------------------- dc coefficients . eststo clear
. spex ordwarm2 (77 & 89 General Social Survey) . quietly ologit warm yr89 male white age ed prst, nolog . estadd prchange male age prst, outcome(2) ologit: Changes in Probabilities for warm Outcome: 2 (2D) Min->Max 0->1 -+1/2 -+sd/2 MargEfct male .10462105 .10462105 .10556346 .05362016 .10812605 age .1862759 .00289795 .00319454 .05328724 .00319461 prst -.06301633 -.00080028 -.00089544 -.01297233 -.00089543 1SD 2D 3A 4SA Pr(y|x) .11125716 .32816544 .39936733 .16121005 yr89 male white age ed prst x= .398604 .464893 .876581 44.9355 12.2181 39.5853 sd_x= .489718 .498875 .328989 16.779 3.16083 14.4923 added scalars: e(predval) = .32816544 e(outcome) = 2 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 3 e(X) : 4 x 6 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . eststo ologit . quietly oprobit warm yr89 male white age ed prst, nolog . estadd prchange male age prst, outcome(2) oprobit: Changes in Probabilities for warm Outcome: 2 (2D) Min->Max 0->1 -+1/2 -+sd/2 MargEfct male .08271328 .08271328 .08378038 .0423308 .08521085 age .1476199 .00280122 .00249711 .04172876 .00249716 prst -.04764727 -.00058544 -.00067082 -.00971937 -.00067081 1SD 2D 3A 4SA Pr(y|x) .11177309 .32895118 .39563131 .1636444 yr89 male white age ed prst x= .398604 .464893 .876581 44.9355 12.2181 39.5853 sd_x= .489718 .498875 .328989 16.779 3.16083 14.4923 added scalars: e(predval) = .32895118 e(outcome) = 2 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 3 e(X) : 4 x 6 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . eststo oprobit . esttab, main(dc) nostar not stats(predval outcome) mtitles -------------------------------------- (1) (2) ologit oprobit -------------------------------------- male 0.105 0.0827 age 0.0533 0.0417 prst -0.0130 -0.00972 -------------------------------------- predval 0.328 0.329 outcome 2 2 -------------------------------------- dc coefficients . eststo clear
. spex ordwarm2 (77 & 89 General Social Survey) . quietly ologit warm yr89 male white age ed prst, nolog . estadd prchange male age prst, split ologit: Changes in Probabilities for warm male Avg|Chg| 1SD 2D 3A 4SA 0->1 .08961766 .07461427 .10462105 -.08137083 -.09786447 age Avg|Chg| 1SD 2D 3A 4SA Min->Max .18319855 .18012119 .1862759 -.17905769 -.18733941 -+1/2 .00266841 .00214228 .00319454 -.00240716 -.00292964 -+sd/2 .0446563 .03602537 .05328724 -.0401054 -.0492072 MargEfct .00266844 .00214226 .00319461 -.00240723 -.00292964 prst Avg|Chg| 1SD 2D 3A 4SA Min->Max .05186236 -.04070839 -.06301633 .04440692 .05931778 -+1/2 .00074795 -.00060046 -.00089544 .00067475 .00082116 -+sd/2 .01083777 -.00870322 -.01297233 .00977433 .0119012 MargEfct .00074795 -.00060046 -.00089543 .00067473 .00082116 1SD 2D 3A 4SA Pr(y|x) .11125716 .32816544 .39936733 .16121005 yr89 male white age ed prst x= .398604 .464893 .876581 44.9355 12.2181 39.5853 sd_x= .489718 .498875 .328989 16.779 3.16083 14.4923 added scalars: e(predval) = .11125716 e(outcome) = 1 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 3 e(X) : 4 x 6 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables results for outcome 1 stored as ologit_1 results for outcome 2 stored as ologit_2 results for outcome 3 stored as ologit_3 results for outcome 4 stored as ologit_4 . esttab, main(dc) nostar not stats(predval outcome) /// > mtitles nonumbers ---------------------------------------------------------------- 1SD 2D 3A 4SA ---------------------------------------------------------------- male 0.0746 0.105 -0.0814 -0.0979 age 0.0360 0.0533 -0.0401 -0.0492 prst -0.00870 -0.0130 0.00977 0.0119 ---------------------------------------------------------------- predval 0.111 0.328 0.399 0.161 outcome 1 2 3 4 ---------------------------------------------------------------- dc coefficients . eststo clear
. spex ordwarm2 (77 & 89 General Social Survey) . quietly oprobit warm yr89 male white age ed prst, nolog . estadd prchange male age prst, split oprobit: Changes in Probabilities for warm male Avg|Chg| 1SD 2D 3A 4SA 0->1 .08185343 .08099359 .08271328 -.06222743 -.10147941 age Avg|Chg| 1SD 2D 3A 4SA Min->Max .16764789 .18767587 .1476199 -.14207253 -.19322326 -+1/2 .00241081 .00232452 .00249711 -.00180408 -.00301754 -+sd/2 .04038233 .03903589 .04172876 -.03013682 -.05062783 MargEfct .00241084 .00232452 .00249716 -.00180413 -.00301755 prst Avg|Chg| 1SD 2D 3A 4SA Min->Max .04505957 -.04247186 -.04764727 .03203639 .05808274 -+1/2 .00064762 -.00062443 -.00067082 .00048462 .00081059 -+sd/2 .00938461 -.00904983 -.00971937 .00702184 .01174738 MargEfct .00064762 -.00062443 -.00067081 .00048464 .0008106 1SD 2D 3A 4SA Pr(y|x) .11177309 .32895118 .39563131 .1636444 yr89 male white age ed prst x= .398604 .464893 .876581 44.9355 12.2181 39.5853 sd_x= .489718 .498875 .328989 16.779 3.16083 14.4923 added scalars: e(predval) = .11177309 e(outcome) = 1 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 3 e(X) : 4 x 6 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables results for outcome 1 stored as oprobit_1 results for outcome 2 stored as oprobit_2 results for outcome 3 stored as oprobit_3 results for outcome 4 stored as oprobit_4 . esttab, main(dc) nostar not stats(predval outcome) /// > mtitles nonumbers ---------------------------------------------------------------- 1SD 2D 3A 4SA ---------------------------------------------------------------- male 0.0810 0.0827 -0.0622 -0.101 age 0.0390 0.0417 -0.0301 -0.0506 prst -0.00905 -0.00972 0.00702 0.0117 ---------------------------------------------------------------- predval 0.112 0.329 0.396 0.164 outcome 1 2 3 4 ---------------------------------------------------------------- dc coefficients . eststo clear
. spex ordwarm2 (77 & 89 General Social Survey) . quietly ologit warm yr89 male white age ed prst, nolog . estadd prvalue, x(yr89=0 male=1 prst=20 age=64 ed=16) /// > brief label(type1) ologit: Predictions for warm 95% Conf. Interval Pr(y=1SD|x): 0.2317 [ 0.1776, 0.2857] Pr(y=2D|x): 0.4221 [ 0.3942, 0.4500] Pr(y=3A|x): 0.2723 [ 0.2249, 0.3198] Pr(y=4SA|x): 0.0739 [ 0.0523, 0.0954] added matrices: e(_estadd_prvalue) : 1 x 24 e(_estadd_prvalue_x) : 1 x 6 . estadd prvalue, x(yr89=1 male=0 prst=80 age=30 ed=24) /// > brief label(type2) ologit: Predictions for warm 95% Conf. Interval Pr(y=1SD|x): 0.0164 [ 0.0106, 0.0222] Pr(y=2D|x): 0.0781 [ 0.0554, 0.1008] Pr(y=3A|x): 0.3147 [ 0.2636, 0.3658] Pr(y=4SA|x): 0.5908 [ 0.5143, 0.6673] updated matrices: e(_estadd_prvalue) : 2 x 24 e(_estadd_prvalue_x) : 2 x 6 . estadd prvalue, x(yr89=0) brief label(type3) ologit: Predictions for warm 95% Conf. Interval Pr(y=1SD|x): 0.1336 [ 0.1176, 0.1496] Pr(y=2D|x): 0.3577 [ 0.3348, 0.3806] Pr(y=3A|x): 0.3737 [ 0.3517, 0.3957] Pr(y=4SA|x): 0.1349 [ 0.1195, 0.1504] updated matrices: e(_estadd_prvalue) : 3 x 24 e(_estadd_prvalue_x) : 3 x 6 . estadd prvalue, x(yr89=1) brief label(type4) ologit: Predictions for warm 95% Conf. Interval Pr(y=1SD|x): 0.0837 [ 0.0711, 0.0963] Pr(y=2D|x): 0.2802 [ 0.2571, 0.3032] Pr(y=3A|x): 0.4277 [ 0.4046, 0.4507] Pr(y=4SA|x): 0.2085 [ 0.1855, 0.2315] updated matrices: e(_estadd_prvalue) : 4 x 24 e(_estadd_prvalue_x) : 4 x 6 . estadd prvalue post scalars: e(N) = 2293 macros: e(depvar) : "warm" e(cmd) : "estadd_prvalue" e(model) : "ologit" e(properties) : "b" matrices: e(b) : 1 x 16 (predictions) e(se) : 1 x 16 (standard errors) e(LB) : 1 x 16 (lower CI bounds) e(UB) : 1 x 16 (upper CI bounds) e(Category) : 1 x 16 (outcome values) e(X) : 6 x 4 (yr89, male, white, age, ed, prst) . esttab, nostar unstack /// > coeflabels(type1 "old working class men 1977" /// > type2 "young prestigious women 1989" /// > type3 "average individual 1977" /// > type4 "average individual 1989") /// > wrap varwidth(18) ---------------------------------------------------------------------- (1) warm 1SD 2D 3A 4SA ---------------------------------------------------------------------- old working class 0.232 0.422 0.272 0.0739 men 1977 (8.40) (29.67) (11.25) (6.72) young prestigious 0.0164 0.0781 0.315 0.591 women 1989 (5.56) (6.74) (12.07) (15.13) average individual 0.134 0.358 0.374 0.135 1977 (16.37) (30.57) (33.30) (17.09) average individual 0.0837 0.280 0.428 0.208 1989 (13.00) (23.81) (36.29) (17.77) ---------------------------------------------------------------------- N 2293 ---------------------------------------------------------------------- t statistics in parentheses
. spex ordwarm2 (77 & 89 General Social Survey) . quietly oprobit warm yr89 male white age ed prst, nolog . estadd prvalue, x(yr89=0 male=1 prst=20 age=64 ed=16) /// > brief label(type1) oprobit: Predictions for warm 95% Conf. Interval Pr(y=1SD|x): 0.2370 [ 0.1821, 0.2918] Pr(y=2D|x): 0.4006 [ 0.3750, 0.4261] Pr(y=3A|x): 0.2931 [ 0.2844, 0.3017] Pr(y=4SA|x): 0.0693 [ 0.0450, 0.0936] added matrices: e(_estadd_prvalue) : 1 x 24 e(_estadd_prvalue_x) : 1 x 6 . estadd prvalue, x(yr89=1 male=0 prst=80 age=30 ed=24) /// > brief label(type2) oprobit: Predictions for warm 95% Conf. Interval Pr(y=1SD|x): 0.0088 [ 0.0040, 0.0136] Pr(y=2D|x): 0.0870 [ 0.0754, 0.0985] Pr(y=3A|x): 0.3338 [ 0.3083, 0.3593] Pr(y=4SA|x): 0.5704 [ 0.4977, 0.6432] updated matrices: e(_estadd_prvalue) : 2 x 24 e(_estadd_prvalue_x) : 2 x 6 . estadd prvalue, x(yr89=0) brief label(type3) oprobit: Predictions for warm 95% Conf. Interval Pr(y=1SD|x): 0.1378 [ 0.1213, 0.1544] Pr(y=2D|x): 0.3534 [ 0.3262, 0.3805] Pr(y=3A|x): 0.3746 [ 0.3605, 0.3886] Pr(y=4SA|x): 0.1342 [ 0.1182, 0.1502] updated matrices: e(_estadd_prvalue) : 3 x 24 e(_estadd_prvalue_x) : 3 x 6 . estadd prvalue, x(yr89=1) brief label(type4) oprobit: Predictions for warm 95% Conf. Interval Pr(y=1SD|x): 0.0794 [ 0.0660, 0.0929] Pr(y=2D|x): 0.2872 [ 0.2615, 0.3128] Pr(y=3A|x): 0.4180 [ 0.3990, 0.4370] Pr(y=4SA|x): 0.2154 [ 0.1917, 0.2391] updated matrices: e(_estadd_prvalue) : 4 x 24 e(_estadd_prvalue_x) : 4 x 6 . estadd prvalue post scalars: e(N) = 2293 macros: e(depvar) : "warm" e(cmd) : "estadd_prvalue" e(model) : "oprobit" e(properties) : "b" matrices: e(b) : 1 x 16 (predictions) e(se) : 1 x 16 (standard errors) e(LB) : 1 x 16 (lower CI bounds) e(UB) : 1 x 16 (upper CI bounds) e(Category) : 1 x 16 (outcome values) e(X) : 6 x 4 (yr89, male, white, age, ed, prst) . esttab, nostar unstack /// > coeflabels(type1 "old working class men 1977" /// > type2 "young prestigious women 1989" /// > type3 "average individual 1977" /// > type4 "average individual 1989") /// > wrap varwidth(18) ---------------------------------------------------------------------- (1) warm 1SD 2D 3A 4SA ---------------------------------------------------------------------- old working class 0.237 0.401 0.293 0.0693 men 1977 (8.47) (30.74) (66.40) (5.59) young prestigious 0.00879 0.0870 0.334 0.570 women 1989 (3.59) (14.72) (25.67) (15.37) average individual 0.138 0.353 0.375 0.134 1977 (16.33) (25.49) (52.31) (16.44) average individual 0.0794 0.287 0.418 0.215 1989 (11.57) (21.95) (43.16) (17.83) ---------------------------------------------------------------------- N 2293 ---------------------------------------------------------------------- t statistics in parentheses
. spex nomocc2 (1982 General Social Survey) . quietly mlogit occ white ed exper, nolog . estadd fitstat Measures of Fit for mlogit of occ Log-Lik Intercept Only: -509.844 Log-Lik Full Model: -426.800 D(321): 853.601 LR(12): 166.087 Prob > LR: 0.000 McFadden's R2: 0.163 McFadden's Adj R2: 0.131 ML (Cox-Snell) R2: 0.389 Cragg-Uhler(Nagelkerke) R2: 0.409 Count R2: 0.501 Adj Count R2: 0.253 AIC: 2.628 AIC*n: 885.601 BIC: -1014.646 BIC': -96.246 BIC used by Stata: 946.722 AIC used by Stata: 885.601 added scalars: e(dev) = 853.60095 e(dev_df) = 321 e(lrx2) = 166.08716 e(lrx2_df) = 12 e(lrx2_p) = 3.010e-29 e(r2_mf) = .16288035 e(r2_mfadj) = .13149821 e(r2_ml) = .38911114 e(r2_cu) = .40895353 e(r2_ct) = .50148368 e(r2_ctadj) = .25333333 e(aic0) = 2.627896 e(aic_n) = 885.60095 e(bic0) = -1014.6457 e(bic_p) = -96.246162 e(statabic) = 946.72228 e(stataaic) = 885.60095 e(n_rhs) = 3 e(n_parm) = 16 . eststo mlogit . esttab, wide scalars(r2_ct r2_ctadj aic0 aic_n) mtitles ----------------------------------------- (1) mlogit ----------------------------------------- Menial white -1.774* (-2.35) ed -0.779*** (-6.79) exper -0.0357* (-1.98) _cons 11.52*** (6.23) ----------------------------------------- BlueCol white -0.538 (-0.67) ed -0.878*** (-8.74) exper -0.0309* (-2.15) _cons 12.26*** (7.35) ----------------------------------------- Craft white -1.302* (-2.01) ed -0.685*** (-7.67) exper -0.00797 (-0.63) _cons 10.43*** (6.87) ----------------------------------------- WhiteCol white -0.203 (-0.23) ed -0.426*** (-4.62) exper -0.00106 (-0.07) _cons 5.280** (3.14) ----------------------------------------- Prof o.white 0 (.) o.ed 0 (.) o.exper 0 (.) o._cons 0 (.) ----------------------------------------- N 337 r2_ct 0.501 r2_ctadj 0.253 aic0 2.628 aic_n 885.6 ----------------------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex nomocc2 (1982 General Social Survey) . quietly mlogit occ white ed exper, nolog . estadd listcoef, gt adjacent mlogit (N=337): Factor Change in the Odds of occ Variable: white (sd=.27642268) Odds comparing | Alternative 1 | to Alternative 2 | b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- BlueCol -Menial | 1.23650 1.707 0.088 3.4436 1.4075 Craft -BlueCol | -0.76416 -1.208 0.227 0.4657 0.8096 WhiteCol-Craft | 1.09904 1.343 0.179 3.0013 1.3550 Prof -WhiteCol | 0.20292 0.233 0.815 1.2250 1.0577 ---------------------------------------------------------------- Variable: ed (sd=2.9464271) Odds comparing | Alternative 1 | to Alternative 2 | b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- BlueCol -Menial | -0.09942 -0.972 0.331 0.9054 0.7461 Craft -BlueCol | 0.19324 2.494 0.013 1.2132 1.7671 WhiteCol-Craft | 0.25934 2.773 0.006 1.2961 2.1471 Prof -WhiteCol | 0.42569 4.616 0.000 1.5307 3.5053 ---------------------------------------------------------------- Variable: exper (sd=13.959364) Odds comparing | Alternative 1 | to Alternative 2 | b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- BlueCol -Menial | 0.00472 0.271 0.786 1.0047 1.0681 Craft -BlueCol | 0.02296 1.829 0.067 1.0232 1.3779 WhiteCol-Craft | 0.00691 0.495 0.621 1.0069 1.1013 Prof -WhiteCol | 0.00106 0.073 0.941 1.0011 1.0148 ---------------------------------------------------------------- added matrices: e(b_raw) : 1 x 12 (b) e(b_se) : 1 x 12 (se) e(b_z) : 1 x 12 (z) e(b_p) : 1 x 12 (P>|z|) e(b_fact) : 1 x 12 (e^b) e(b_facts) : 1 x 12 (e^bStdX) e(b_sdx) : 1 x 12 (SDofX) . esttab , cell("b_raw b_fact b_facts b_sdx") varwidth(14) ------------------------------------------------------------------ (1) occ b_raw b_fact b_facts b_sdx ------------------------------------------------------------------ BlueCol-Menial white 1.236504 3.443553 1.407476 .2764227 ed -.0994247 .9053581 .7460612 2.946427 exper .0047212 1.004732 1.068126 13.95936 ------------------------------------------------------------------ Craft-BlueCol white -.7641602 .4657249 .8095869 .2764227 ed .1932401 1.213174 1.76715 2.946427 exper .0229626 1.023228 1.377875 13.95936 ------------------------------------------------------------------ WhiteCol-Craft white 1.099042 3.001288 1.354998 .2764227 ed .2593423 1.296077 2.147132 2.946427 exper .0069121 1.006936 1.101296 13.95936 ------------------------------------------------------------------ Prof-WhiteCol white .2029212 1.224976 1.057695 .2764227 ed .4256943 1.530653 3.505304 2.946427 exper .001055 1.001056 1.014837 13.95936 ------------------------------------------------------------------ N 337 ------------------------------------------------------------------
. spex nomocc2 (1982 General Social Survey) . quietly mlogit occ white ed exper, nolog . estadd mlogtest, wald lr set(white exper) **** Likelihood-ratio tests for independent variables (N=337) Ho: All coefficients associated with given variable(s) are 0. | chi2 df P>chi2 -------------+------------------------- white | 8.095 4 0.088 ed | 156.937 4 0.000 exper | 8.561 4 0.073 -------------+------------------------- set_1: | 16.452 8 0.036 white | exper | --------------------------------------- **** Wald tests for independent variables (N=337) Ho: All coefficients associated with given variable(s) are 0. | chi2 df P>chi2 -------------+------------------------- white | 8.149 4 0.086 ed | 84.968 4 0.000 exper | 7.995 4 0.092 -------------+------------------------- set_1: | 15.773 8 0.046 white | exper | --------------------------------------- added scalars: e(wald_set1_chi2) = 15.773146 e(wald_set1_df) = 8 e(wald_set1_p) = .0457446 e(lrtest_set1_chi2) = 16.451934 e(lrtest_set1_df) = 8 e(lrtest_set1_p) = .03634985 added matrices: e(wald) : 3 x 3 (chi2, df, p) e(lrtest) : 3 x 3 (chi2, df, p) . estout, cell("wald[chi2] wald[df] wald[p]") /// > stat(wald_set1_chi2 wald_set1_df wald_set1_p, /// > layout("@ @ @") label("white&exper")) /// > mlabel(none) --------------------------------------------------- chi2 df p --------------------------------------------------- white 8.149203 4 .0862631 ed 84.96817 4 1.54e-17 exper 7.994939 4 .0917638 --------------------------------------------------- white&exper 15.77315 8 .0457446 --------------------------------------------------- . estout, cell("lrtest[chi2] lrtest[df] lrtest[p]") /// > stat(lrtest_set1_chi2 lrtest_set1_df lrtest_set1_p, /// > layout("@ @ @") label("white&exper")) /// > mlabel(none) --------------------------------------------------- chi2 df p --------------------------------------------------- white 8.095408 4 .0881451 ed 156.9372 4 6.63e-33 exper 8.560953 4 .073061 --------------------------------------------------- white&exper 16.45193 8 .0363498 --------------------------------------------------- . estout, cell(" wald[p](label(P>Wald) fmt(4)) lrtest[p](label(P>LR))") /// > stat(wald_set1_p lrtest_set1_p, layout("@ @") label("white&exper")) /// > mlabel(none) -------------------------------------- P>Wald P>LR -------------------------------------- white 0.0863 0.0881 ed 0.0000 0.0000 exper 0.0918 0.0731 -------------------------------------- white&exper 0.0457 0.0363 --------------------------------------
. spex nomocc2 (1982 General Social Survey) . quietly mlogit occ white ed exper, nolog . estadd prchange mlogit: Changes in Probabilities for occ white Avg|Chg| Menial BlueCol Craft WhiteCol Prof 0->1 .11623582 -.13085523 .04981799 -.15973434 .07971004 .1610615 ed Avg|Chg| Menial BlueCol Craft WhiteCol Min->Max .39242268 -.13017954 -.70077323 -.15010394 .02425591 -+1/2 .05855425 -.02559762 -.06831616 -.05247185 .01250795 -+sd/2 .1640657 -.07129153 -.19310513 -.14576758 .03064777 MargEfct .05894859 -.02579097 -.06870635 -.05287415 .01282041 Prof Min->Max .95680079 -+1/2 .13387768 -+sd/2 .37951647 MargEfct .13455107 exper Avg|Chg| Menial BlueCol Craft WhiteCol Min->Max .12193559 -.11536534 -.18947365 .03115708 .09478889 -+1/2 .00233425 -.00226997 -.00356567 .00105992 .0016944 -+sd/2 .03253578 -.03167491 -.04966453 .01479983 .02360725 MargEfct .00233427 -.00226997 -.00356571 .00105992 .00169442 Prof Min->Max .17889298 -+1/2 .00308132 -+sd/2 .04293236 MargEfct .00308134 Menial BlueCol Craft WhiteCol Prof Pr(y|x) .09426806 .18419114 .29411051 .16112968 .26630062 white ed exper x= .916914 13.095 20.5015 sd_x= .276423 2.94643 13.9594 added scalars: e(predval1) = .09426806 e(predval2) = .18419114 e(predval3) = .29411051 e(predval4) = .16112968 e(predval5) = .26630062 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 18 (main, Min->Max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 18 e(X) : 4 x 3 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . eststo mlogit . quietly mprobit occ white ed exper, nolog . estadd prchange mprobit: Changes in Probabilities for occ white Avg|Chg| Menial BlueCol Craft WhiteCol Prof 0->1 .11142595 -.13099539 .03923495 -.14756948 .07652746 .16280247 ed Avg|Chg| Menial BlueCol Craft WhiteCol Min->Max .39433155 -.13480758 -.63618958 -.21483173 .03136472 -+1/2 .05591886 -.02555373 -.06636748 -.04787594 .00948766 -+sd/2 .1577241 -.0714798 -.18783711 -.13499337 .02528359 Prof Min->Max .95446413 -+1/2 .13030948 -+sd/2 .36902665 exper Avg|Chg| Menial BlueCol Craft WhiteCol Min->Max .123281 -.11218768 -.19601482 .01516485 .07135144 -+1/2 .00229492 -.00215125 -.00358605 .00069633 .00136708 -+sd/2 .03197956 -.02998788 -.04996105 .00971583 .01904152 Prof Min->Max .2216862 -+1/2 .00367388 -+sd/2 .05119154 Menial BlueCol Craft WhiteCol Prof Pr(y|x) .09325961 .18944861 .27852002 .15457167 .2842001 white ed exper x= .916914 13.095 20.5015 sd_x= .276423 2.94643 13.9594 added scalars: e(predval1) = .09325961 e(predval2) = .18944861 e(predval3) = .27852002 e(predval4) = .15457167 e(predval5) = .2842001 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 5 x 18 (main, Min->Max, 0->1, -+1/2, -+sd/2) e(pattern) : 1 x 18 e(X) : 4 x 3 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . eststo mprobit . esttab mlogit, main(dc) nostar not unstack compress ---------------------------------------------------------------------- (1) occ Avg|Chg| Menial BlueCol Craft WhiteCol Prof ---------------------------------------------------------------------- white 0.116 -0.131 0.0498 -0.160 0.0797 0.161 ed 0.164 -0.0713 -0.193 -0.146 0.0306 0.380 exper 0.0325 -0.0317 -0.0497 0.0148 0.0236 0.0429 ---------------------------------------------------------------------- N 337 ---------------------------------------------------------------------- dc coefficients . esttab mprobit, main(dc) nostar not unstack compress ---------------------------------------------------------------------- (1) occ Avg|Chg| Menial BlueCol Craft WhiteCol Prof ---------------------------------------------------------------------- white 0.111 -0.131 0.0392 -0.148 0.0765 0.163 ed 0.158 -0.0715 -0.188 -0.135 0.0253 0.369 exper 0.0320 -0.0300 -0.0500 0.00972 0.0190 0.0512 ---------------------------------------------------------------------- N 337 ---------------------------------------------------------------------- dc coefficients . esttab, main(dc) nostar not mtitles -------------------------------------- (1) (2) mlogit mprobit -------------------------------------- Avg|Chg| white 0.116 0.111 ed 0.164 0.158 exper 0.0325 0.0320 -------------------------------------- Menial white -0.131 -0.131 ed -0.0713 -0.0715 exper -0.0317 -0.0300 -------------------------------------- BlueCol white 0.0498 0.0392 ed -0.193 -0.188 exper -0.0497 -0.0500 -------------------------------------- Craft white -0.160 -0.148 ed -0.146 -0.135 exper 0.0148 0.00972 -------------------------------------- WhiteCol white 0.0797 0.0765 ed 0.0306 0.0253 exper 0.0236 0.0190 -------------------------------------- Prof white 0.161 0.163 ed 0.380 0.369 exper 0.0429 0.0512 -------------------------------------- N 337 337 -------------------------------------- dc coefficients . eststo clear
. spex nomocc2 (1982 General Social Survey) . quietly mlogit occ white ed exper, nolog . estadd prchange, outcome(3) mlogit: Changes in Probabilities for occ Outcome: 3 (Craft) Min->Max 0->1 -+1/2 -+sd/2 MargEfct white -.15973434 -.15973434 -.17549489 -.05025825 -.18235627 ed -.15010394 .01737602 -.05247185 -.14576758 -.05287415 exper .03115708 .001993 .00105992 .01479983 .00105992 Menial BlueCol Craft WhiteCol Prof Pr(y|x) .09426806 .18419114 .29411051 .16112968 .26630062 white ed exper x= .916914 13.095 20.5015 sd_x= .276423 2.94643 13.9594 added scalars: e(predval) = .29411051 e(outcome) = 3 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 3 e(X) : 4 x 3 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . eststo mlogit . quietly mprobit occ white ed exper, nolog . estadd prchange, outcome(3) mprobit: Changes in Probabilities for occ Outcome: 3 (Craft) Min->Max 0->1 -+1/2 -+sd/2 white -.14756948 -.14756948 -.15760018 -.04463357 ed -.21483173 .01855293 -.04787594 -.13499337 exper .01516485 .00139609 .00069633 .00971583 Menial BlueCol Craft WhiteCol Prof Pr(y|x) .09325961 .18944861 .27852002 .15457167 .2842001 white ed exper x= .916914 13.095 20.5015 sd_x= .276423 2.94643 13.9594 added scalars: e(predval) = .27852002 e(outcome) = 3 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 5 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2) e(pattern) : 1 x 3 e(X) : 4 x 3 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . eststo mprobit . esttab, aux(dc) wide nopar stats(predval outcome) keep(Craft:) mtitles ---------------------------------------------------------------------- (1) (2) mlogit mprobit ---------------------------------------------------------------------- Craft white -1.302* -0.160 -0.890 -0.148 ed -0.685*** -0.146 -0.472*** -0.135 exper -0.00797 0.0148 -0.00778 0.00972 _cons 10.43*** 7.140*** ---------------------------------------------------------------------- predval 0.294 0.279 outcome 3 3 ---------------------------------------------------------------------- dc in second column * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex nomocc2 (1982 General Social Survey) . quietly mlogit occ white ed exper, nolog . estadd prchange, split mlogit: Changes in Probabilities for occ white Avg|Chg| Menial BlueCol Craft WhiteCol Prof 0->1 .11623582 -.13085523 .04981799 -.15973434 .07971004 .1610615 ed Avg|Chg| Menial BlueCol Craft WhiteCol Min->Max .39242268 -.13017954 -.70077323 -.15010394 .02425591 -+1/2 .05855425 -.02559762 -.06831616 -.05247185 .01250795 -+sd/2 .1640657 -.07129153 -.19310513 -.14576758 .03064777 MargEfct .05894859 -.02579097 -.06870635 -.05287415 .01282041 Prof Min->Max .95680079 -+1/2 .13387768 -+sd/2 .37951647 MargEfct .13455107 exper Avg|Chg| Menial BlueCol Craft WhiteCol Min->Max .12193559 -.11536534 -.18947365 .03115708 .09478889 -+1/2 .00233425 -.00226997 -.00356567 .00105992 .0016944 -+sd/2 .03253578 -.03167491 -.04966453 .01479983 .02360725 MargEfct .00233427 -.00226997 -.00356571 .00105992 .00169442 Prof Min->Max .17889298 -+1/2 .00308132 -+sd/2 .04293236 MargEfct .00308134 Menial BlueCol Craft WhiteCol Prof Pr(y|x) .09426806 .18419114 .29411051 .16112968 .26630062 white ed exper x= .916914 13.095 20.5015 sd_x= .276423 2.94643 13.9594 added scalars: e(predval) = .09426806 e(outcome) = 1 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 6 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2, Marg > Efct) e(pattern) : 1 x 3 e(X) : 4 x 3 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables results for outcome 1 stored as mlogit_1 results for outcome 2 stored as mlogit_2 results for outcome 3 stored as mlogit_3 results for outcome 4 stored as mlogit_4 results for outcome 5 stored as mlogit_5 . esttab, main(dc) nostar not scalars(predval outcome) noobs mtitles ----------------------------------------------------------------------------- (1) (2) (3) (4) (5) Menial BlueCol Craft WhiteCol Prof ----------------------------------------------------------------------------- white -0.131 0.0498 -0.160 0.0797 0.161 ed -0.0713 -0.193 -0.146 0.0306 0.380 exper -0.0317 -0.0497 0.0148 0.0236 0.0429 ----------------------------------------------------------------------------- predval 0.0943 0.184 0.294 0.161 0.266 outcome 1 2 3 4 5 ----------------------------------------------------------------------------- dc coefficients . eststo clear
. spex nomocc2 (1982 General Social Survey) . quietly mprobit occ white ed exper, nolog . estadd prchange, split mprobit: Changes in Probabilities for occ white Avg|Chg| Menial BlueCol Craft WhiteCol Prof 0->1 .11142595 -.13099539 .03923495 -.14756948 .07652746 .16280247 ed Avg|Chg| Menial BlueCol Craft WhiteCol Min->Max .39433155 -.13480758 -.63618958 -.21483173 .03136472 -+1/2 .05591886 -.02555373 -.06636748 -.04787594 .00948766 -+sd/2 .1577241 -.0714798 -.18783711 -.13499337 .02528359 Prof Min->Max .95446413 -+1/2 .13030948 -+sd/2 .36902665 exper Avg|Chg| Menial BlueCol Craft WhiteCol Min->Max .123281 -.11218768 -.19601482 .01516485 .07135144 -+1/2 .00229492 -.00215125 -.00358605 .00069633 .00136708 -+sd/2 .03197956 -.02998788 -.04996105 .00971583 .01904152 Prof Min->Max .2216862 -+1/2 .00367388 -+sd/2 .05119154 Menial BlueCol Craft WhiteCol Prof Pr(y|x) .09325961 .18944861 .27852002 .15457167 .2842001 white ed exper x= .916914 13.095 20.5015 sd_x= .276423 2.94643 13.9594 added scalars: e(predval) = .09325961 e(outcome) = 1 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 5 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2) e(pattern) : 1 x 3 e(X) : 4 x 3 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables results for outcome 1 stored as mprobit_1 results for outcome 2 stored as mprobit_2 results for outcome 3 stored as mprobit_3 results for outcome 4 stored as mprobit_4 results for outcome 5 stored as mprobit_5 . esttab, main(dc) nostar not scalars(predval outcome) noobs mtitles ----------------------------------------------------------------------------- (1) (2) (3) (4) (5) Menial BlueCol Craft WhiteCol Prof ----------------------------------------------------------------------------- white -0.131 0.0392 -0.148 0.0765 0.163 ed -0.0715 -0.188 -0.135 0.0253 0.369 exper -0.0300 -0.0500 0.00972 0.0190 0.0512 ----------------------------------------------------------------------------- predval 0.0933 0.189 0.279 0.155 0.284 outcome 1 2 3 4 5 ----------------------------------------------------------------------------- dc coefficients . eststo clear
. spex nomocc2 (1982 General Social Survey) . quietly mlogit occ white ed exper, nolog . levelsof ed, local(edlevels) 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . foreach l of local edlevels { 2. quietly estadd prvalue, x(ed=`l' white=0) label(`l') 3. } . estadd prvalue post NonWhite scalars: e(N) = 337 macros: e(depvar) : "occ" e(cmd) : "estadd_prvalue" e(model) : "mlogit" e(properties) : "b" matrices: e(b) : 1 x 80 (predictions) e(se) : 1 x 80 (standard errors) e(LB) : 1 x 80 (lower CI bounds) e(UB) : 1 x 80 (upper CI bounds) e(Category) : 1 x 80 (outcome values) e(X) : 3 x 16 (white, ed, exper) results stored as NonWhite . foreach l of local edlevels { 2. quietly estadd prvalue, x(ed=`l' white=1) label(`l') 3. } . estadd prvalue post White scalars: e(N) = 337 macros: e(depvar) : "occ" e(cmd) : "estadd_prvalue" e(model) : "mlogit" e(properties) : "b" matrices: e(b) : 1 x 160 (predictions) e(se) : 1 x 160 (standard errors) e(LB) : 1 x 160 (lower CI bounds) e(UB) : 1 x 160 (upper CI bounds) e(Category) : 1 x 160 (outcome values) e(X) : 3 x 32 (white, ed, exper) results stored as White . esttab NonWhite White, b(4) se nostar wide /// > keep(Menial:) mtitles eqlabels(none) noobs ---------------------------------------------------------------- (1) (2) NonWhite White ---------------------------------------------------------------- 3 0.2847 (0.2013) 0.1216 (0.0917) 6 0.2987 (0.1578) 0.1384 (0.0680) 7 0.2988 (0.1440) 0.1417 (0.0585) 8 0.2963 (0.1312) 0.1431 (0.0487) 9 0.2906 (0.1198) 0.1417 (0.0392) 10 0.2814 (0.1100) 0.1366 (0.0308) 11 0.2675 (0.1021) 0.1265 (0.0245) 12 0.2476 (0.0956) 0.1104 (0.0212) 13 0.2199 (0.0895) 0.0883 (0.0195) 14 0.1832 (0.0821) 0.0632 (0.0175) 15 0.1393 (0.0714) 0.0401 (0.0142) 16 0.0944 (0.0566) 0.0228 (0.0102) 17 0.0569 (0.0399) 0.0120 (0.0066) 18 0.0310 (0.0250) 0.0060 (0.0039) 19 0.0158 (0.0143) 0.0029 (0.0022) 20 0.0077 (0.0077) 0.0014 (0.0012) ---------------------------------------------------------------- Standard errors in parentheses . eststo clear
. spex nomocc2 (1982 General Social Survey) . quietly mprobit occ white ed exper, nolog . levelsof ed, local(edlevels) 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . foreach l of local edlevels { 2. quietly estadd prvalue, x(ed=`l' white=0) label(`l') 3. } . estadd prvalue post NonWhite scalars: e(N) = 337 macros: e(depvar) : "occ" e(cmd) : "estadd_prvalue" e(model) : "mprobit" e(properties) : "b" matrices: e(b) : 1 x 80 (predictions) e(se) : 1 x 80 (standard errors) e(LB) : 1 x 80 (lower CI bounds) e(UB) : 1 x 80 (upper CI bounds) e(Category) : 1 x 80 (outcome values) e(X) : 3 x 16 (white, ed, exper) results stored as NonWhite . foreach l of local edlevels { 2. quietly estadd prvalue, x(ed=`l' white=1) label(`l') 3. } . estadd prvalue post White scalars: e(N) = 337 macros: e(depvar) : "occ" e(cmd) : "estadd_prvalue" e(model) : "mprobit" e(properties) : "b" matrices: e(b) : 1 x 160 (predictions) e(se) : 1 x 160 (standard errors) e(LB) : 1 x 160 (lower CI bounds) e(UB) : 1 x 160 (upper CI bounds) e(Category) : 1 x 160 (outcome values) e(X) : 3 x 32 (white, ed, exper) results stored as White . esttab NonWhite White, b(4) nostar not /// > keep(Menial:) mtitles eqlabels(none) noobs -------------------------------------- (1) (2) NonWhite White -------------------------------------- 3 0.2446 0.1274 6 0.2617 0.1421 7 0.2654 0.1450 8 0.2676 0.1462 9 0.2679 0.1446 10 0.2652 0.1389 11 0.2577 0.1275 12 0.2429 0.1098 13 0.2185 0.0869 14 0.1842 0.0623 15 0.1429 0.0398 16 0.1006 0.0225 17 0.0636 0.0112 18 0.0357 0.0049 19 0.0178 0.0019 20 0.0078 0.0006 -------------------------------------- . eststo clear
. spex ordwarm2 (77 & 89 General Social Survey) . quietly slogit warm yr89 male white age ed prst, nolog . estadd fitstat Measures of Fit for slogit of warm Log-Lik Full Model: -2845.595 D(2282): 5691.189 Wald X2(6): 185.448 Prob > X2: 0.000 AIC: 2.492 AIC*n: 5713.189 BIC: -11966.051 BIC used by Stata: 5776.303 AIC used by Stata: 5713.189 added scalars: e(dev) = 5691.1894 e(dev_df) = 2282 e(lrx2) = 185.44833 e(lrx2_df) = 6 e(lrx2_p) = 2.361e-37 e(aic0) = 2.4915785 e(aic_n) = 5713.1894 e(bic0) = -11966.051 e(statabic) = 5776.3032 e(stataaic) = 5713.1894 e(n_rhs) = 8 e(n_parm) = 11 . estadd listcoef slogit (N=2293): Factor Change in Odds Odds of: 4SA vs 1SD ---------------------------------------------------------------------- warm | b z P>|z| e^b e^bStdX SDofX -------------+-------------------------------------------------------- yr89 | 0.94405 6.179 0.000 2.5704 1.5878 0.4897 male | -1.25606 -8.274 0.000 0.2848 0.5344 0.4989 white | -0.63901 -2.973 0.003 0.5278 0.8104 0.3290 age | -0.03841 -8.541 0.000 0.9623 0.5249 16.7790 ed | 0.10933 3.737 0.000 1.1155 1.4128 3.1608 prst | 0.01148 1.983 0.047 1.0115 1.1810 14.4923 -------------+-------------------------------------------------------- phi1_1 | 1.00000 . . phi1_2 | 0.74885 13.840 0.000 phi1_3 | 0.31837 6.397 0.000 -------------+-------------------------------------------------------- theta1 | -1.06006 -2.577 0.010 theta2 | 0.13237 0.423 0.672 theta3 | 0.62730 4.399 0.000 ---------------------------------------------------------------------- added matrices: e(b_fact) : 1 x 6 (e^b) e(b_facts) : 1 x 6 (e^bStdX) e(b_sdx) : 1 x 6 (SDofX) . esttab, cell("b b_fact b_facts") scalars(aic0 bic0) /// > eqlabels(none) --------------------------------------------------- (1) warm b b_fact b_facts --------------------------------------------------- yr89 .9440522 2.570376 1.587752 male -1.256064 .2847727 .5343958 white -.6390139 .5278126 .8103988 age -.0384116 .9623168 .52492 ed .1093335 1.115534 1.412815 prst .0114819 1.011548 1.181044 phi1_1 1 phi1_2 .7488452 phi1_3 .3183653 theta1 -1.060064 theta2 .1323735 theta3 .6272993 --------------------------------------------------- N 2293 aic0 2.492 bic0 -11966.1 ---------------------------------------------------
. spex ordwarm2 (77 & 89 General Social Survey) . quietly slogit warm yr89 male white age ed prst, nolog . estadd prchange male age prst slogit: Changes in Probabilities for warm male Avg|Chg| 1SD 2D 3A 4SA 0->1 .09093904 .07668686 .1051912 -.08178753 -.10009058 age Avg|Chg| 1SD 2D 3A 4SA Min->Max .19115428 .17745935 .2048492 -.18460661 -.19770195 -+1/2 .00280473 .002321 .00328845 -.00249711 -.00311236 -+sd/2 .04692763 .03891201 .05494326 -.04169974 -.05215551 prst Avg|Chg| 1SD 2D 3A 4SA Min->Max .05812308 -.04720601 -.06904018 .0497874 .06645873 -+1/2 .00083838 -.00069379 -.000983 .0007464 .00093034 -+sd/2 .01214788 -.01005406 -.0142417 .01081413 .01348165 1SD 2D 3A 4SA Pr(y|x) .11714774 .32349858 .39201239 .16734134 yr89 male white age ed prst x= .398604 .464893 .876581 44.9355 12.2181 39.5853 sd_x= .489718 .498875 .328989 16.779 3.16083 14.4923 added scalars: e(predval1) = .11714774 e(predval2) = .32349858 e(predval3) = .39201239 e(predval4) = .16734134 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 5 x 15 (main, Min->Max, 0->1, -+1/2, -+sd/2) e(pattern) : 1 x 15 e(X) : 4 x 6 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . esttab, main(dc) unstack nostar not ----------------------------------------------------------------------------- (1) warm Avg|Chg| 1SD 2D 3A 4SA ----------------------------------------------------------------------------- male 0.0909 0.0767 0.105 -0.0818 -0.100 age 0.0469 0.0389 0.0549 -0.0417 -0.0522 prst 0.0121 -0.0101 -0.0142 0.0108 0.0135 ----------------------------------------------------------------------------- N 2293 ----------------------------------------------------------------------------- dc coefficients
. spex ordwarm2 (77 & 89 General Social Survey) . quietly slogit warm yr89 male white age ed prst, nolog . estadd prchange age ed prst, outcome(2) slogit: Changes in Probabilities for warm Outcome: 2 (2D) Min->Max 0->1 -+1/2 -+sd/2 age .2048492 .00294244 .00328845 .05494326 ed -.17157121 -.00616026 -.00935909 -.0295499 prst -.06904018 -.00090283 -.000983 -.0142417 1SD 2D 3A 4SA Pr(y|x) .11714774 .32349858 .39201239 .16734134 yr89 male white age ed prst x= .398604 .464893 .876581 44.9355 12.2181 39.5853 sd_x= .489718 .498875 .328989 16.779 3.16083 14.4923 added scalars: e(predval) = .32349858 e(outcome) = 2 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 5 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2) e(pattern) : 1 x 3 e(X) : 4 x 6 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables . esttab, cell("dc[Min->Max] dc[-+1/2] dc[-+sd/2]") stats(predval outcome) --------------------------------------------------- (1) warm Min->Max -+1/2 -+sd/2 --------------------------------------------------- age .2048492 .0032884 .0549433 ed -.1715712 -.0093591 -.0295499 prst -.0690402 -.000983 -.0142417 --------------------------------------------------- predval .3234986 outcome 2 ---------------------------------------------------
. spex ordwarm2 (77 & 89 General Social Survey) . quietly slogit warm yr89 male white age ed prst, nolog . estadd prchange male age prst, split slogit: Changes in Probabilities for warm male Avg|Chg| 1SD 2D 3A 4SA 0->1 .09093904 .07668686 .1051912 -.08178753 -.10009058 age Avg|Chg| 1SD 2D 3A 4SA Min->Max .19115428 .17745935 .2048492 -.18460661 -.19770195 -+1/2 .00280473 .002321 .00328845 -.00249711 -.00311236 -+sd/2 .04692763 .03891201 .05494326 -.04169974 -.05215551 prst Avg|Chg| 1SD 2D 3A 4SA Min->Max .05812308 -.04720601 -.06904018 .0497874 .06645873 -+1/2 .00083838 -.00069379 -.000983 .0007464 .00093034 -+sd/2 .01214788 -.01005406 -.0142417 .01081413 .01348165 1SD 2D 3A 4SA Pr(y|x) .11714774 .32349858 .39201239 .16734134 yr89 male white age ed prst x= .398604 .464893 .876581 44.9355 12.2181 39.5853 sd_x= .489718 .498875 .328989 16.779 3.16083 14.4923 added scalars: e(predval) = .11714774 e(outcome) = 1 e(delta) = 1 e(centered) = 1 added matrices: e(dc) : 5 x 3 (main, Min->Max, 0->1, -+1/2, -+sd/2) e(pattern) : 1 x 3 e(X) : 4 x 6 (X, SD, Min, Max) first row in e(dc) contains: 01 change for binary variables sd change for continuous variables results for outcome 1 stored as slogit_1 results for outcome 2 stored as slogit_2 results for outcome 3 stored as slogit_3 results for outcome 4 stored as slogit_4 . esttab, main(dc) nostar not stats(predval outcome) /// > mtitles nonumbers ---------------------------------------------------------------- 1SD 2D 3A 4SA ---------------------------------------------------------------- male 0.0767 0.105 -0.0818 -0.100 age 0.0389 0.0549 -0.0417 -0.0522 prst -0.0101 -0.0142 0.0108 0.0135 ---------------------------------------------------------------- predval 0.117 0.323 0.392 0.167 outcome 1 2 3 4 ---------------------------------------------------------------- dc coefficients . eststo clear
. spex ordwarm2 (77 & 89 General Social Survey) . quietly slogit warm yr89 male white age ed prst, nolog . estadd prvalue, x(yr89=0 male=1 prst=20 age=64 ed=16) /// > brief label(type1) slogit: Predictions for warm Pr(y=1SD|x): 0.2341 Pr(y=2D|x): 0.4333 Pr(y=3A|x): 0.2646 Pr(y=4SA|x): 0.0680 added matrices: e(_estadd_prvalue) : 1 x 24 e(_estadd_prvalue_x) : 1 x 6 . estadd prvalue, x(yr89=1 male=0 prst=80 age=30 ed=24) /// > brief label(type2) slogit: Predictions for warm Pr(y=1SD|x): 0.0112 Pr(y=2D|x): 0.0737 Pr(y=3A|x): 0.3993 Pr(y=4SA|x): 0.5158 updated matrices: e(_estadd_prvalue) : 2 x 24 e(_estadd_prvalue_x) : 2 x 6 . estadd prvalue, x(yr89=0) brief label(type3) slogit: Predictions for warm Pr(y=1SD|x): 0.1412 Pr(y=2D|x): 0.3548 Pr(y=3A|x): 0.3656 Pr(y=4SA|x): 0.1384 updated matrices: e(_estadd_prvalue) : 3 x 24 e(_estadd_prvalue_x) : 3 x 6 . estadd prvalue, x(yr89=1) brief label(type4) slogit: Predictions for warm Pr(y=1SD|x): 0.0860 Pr(y=2D|x): 0.2738 Pr(y=3A|x): 0.4236 Pr(y=4SA|x): 0.2167 updated matrices: e(_estadd_prvalue) : 4 x 24 e(_estadd_prvalue_x) : 4 x 6 . estadd prvalue post scalars: e(N) = 2293 macros: e(depvar) : "warm" e(cmd) : "estadd_prvalue" e(model) : "slogit" e(properties) : "b" matrices: e(b) : 1 x 16 (predictions) e(se) : 1 x 16 (standard errors) e(LB) : 1 x 16 (lower CI bounds) e(UB) : 1 x 16 (upper CI bounds) e(Category) : 1 x 16 (outcome values) e(X) : 6 x 4 (yr89, male, white, age, ed, prst) . esttab, nostar not unstack /// > coeflabels(type1 "old working class men 1977" /// > type2 "young prestigious women 1989" /// > type3 "average individual 1977" /// > type4 "average individual 1989") /// > varwidth(28) compress -------------------------------------------------------------------- (1) warm 1SD 2D 3A 4SA -------------------------------------------------------------------- old working class men 1977 0.234 0.433 0.265 0.0680 young prestigious women 1989 0.0112 0.0737 0.399 0.516 average individual 1977 0.141 0.355 0.366 0.138 average individual 1989 0.0860 0.274 0.424 0.217 -------------------------------------------------------------------- N 2293 --------------------------------------------------------------------
. spex travel2 (Greene & Hensher 1997 data on travel mode choice) . quietly clogit choice train bus time invc, group(id) nolog . estadd fitstat Measures of Fit for clogit of choice Log-Lik Intercept Only: -166.989 Log-Lik Full Model: -80.961 D(148): 161.922 LR(4): 172.056 Prob > LR: 0.000 McFadden's R2: 0.515 McFadden's Adj R2: 0.491 ML (Cox-Snell) R2: 0.678 Cragg-Uhler(Nagelkerke) R2: 0.762 Count R2: 0.875 AIC: 1.118 AIC*n: 169.922 BIC: -581.612 BIC': -151.960 BIC used by Stata: 186.412 AIC used by Stata: 169.922 added scalars: e(dev) = 161.92227 e(dev_df) = 148 e(lrx2) = 172.05587 e(lrx2_df) = 4 e(lrx2_p) = 3.786e-36 e(r2_mf) = .51517105 e(r2_mfadj) = .49121738 e(r2_ml) = .67759491 e(r2_cu) = .76229428 e(r2_ct) = .875 e(aic0) = 1.1179097 e(aic_n) = 169.92227 e(bic0) = -581.61205 e(bic_p) = -151.96034 e(statabic) = 186.41224 e(stataaic) = 169.92227 e(n_rhs) = 3 e(n_parm) = 4 . estadd listcoef clogit (N=456): Factor Change in Odds Odds of: 1 vs 0 -------------------------------------------------- choice | b z P>|z| e^b -------------+------------------------------------ train | 2.67124 5.895 0.000 14.4579 bus | 1.47233 3.674 0.000 4.3594 time | -0.01915 -7.812 0.000 0.9810 invc | -0.04817 -4.030 0.000 0.9530 -------------------------------------------------- added matrices: e(b_fact) : 1 x 4 (e^b) . estadd listcoef, percent clogit (N=456): Percentage Change in Odds Odds of: 1 vs 0 -------------------------------------------------- choice | b z P>|z| % -------------+------------------------------------ train | 2.67124 5.895 0.000 1345.8 bus | 1.47233 3.674 0.000 335.9 time | -0.01915 -7.812 0.000 -1.9 invc | -0.04817 -4.030 0.000 -4.7 -------------------------------------------------- added matrices: e(b_pct) : 1 x 4 (%) . esttab, cell("b b_fact b_pct") scalars(r2_mf r2_mfadj r2_ml r2_cu) --------------------------------------------------- (1) choice b b_fact b_pct --------------------------------------------------- choice train 2.671238 14.45786 1345.786 bus 1.472335 4.359401 335.9401 time -.0191453 .9810368 -1.896319 invc -.0481658 .9529758 -4.702424 --------------------------------------------------- N 456 r2_mf 0.515 r2_mfadj 0.491 r2_ml 0.678 r2_cu 0.762 ---------------------------------------------------
. spex travel2 (Greene & Hensher 1997 data on travel mode choice) . quietly clogit choice train bus time invc, group(id) nolog . quietly asprvalue, x(time=643.4 674.6 578.3) rest(asmean) /// > cat(train bus) base(car) save . estadd asprvalue, x(time=653.4 674.6 578.3) rest(asmean) /// > cat(train bus) base(car) label(time train + 10 min) brief diff clogit: Predictions for choice Current Saved Diff train .38845369 .43478274 -.04632905 bus .16446434 .15200497 .01245937 car .44708198 .41321227 .03386971 added matrices: e(_estadd_asprval) : 1 x 3 . estadd asprvalue, x(time=643.4 684.6 578.3) rest(asmean) /// > cat(train bus) base(car) label(time bus + 10 min) brief diff clogit: Predictions for choice Current Saved Diff train .44661152 .43478274 .01182878 bus .12893429 .15200497 -.02307068 car .42445418 .41321227 .01124191 updated matrices: e(_estadd_asprval) : 2 x 3 . estadd asprvalue, x(time=643.4 674.6 588.3) rest(asmean) /// > cat(train bus) base(car) label(time car + 10 min) brief diff clogit: Predictions for choice Current Saved Diff train .46851528 .43478274 .03373253 bus .16379826 .15200497 .01179329 car .36768648 .41321227 -.04552579 updated matrices: e(_estadd_asprval) : 3 x 3 . estadd asprvalue post scalars: e(N) = 456 macros: e(depvar) : "choice" e(cmd) : "estadd_asprvalue" e(model) : "clogit" e(properties) : "b" matrices: e(b) : 1 x 9 (predictions) . esttab, unstack not nostar varwidth(20) ----------------------------------------------------------- (1) choice train bus car ----------------------------------------------------------- time train + 10 min -0.0463 0.0125 0.0339 time bus + 10 min 0.0118 -0.0231 0.0112 time car + 10 min 0.0337 0.0118 -0.0455 ----------------------------------------------------------- N 456 -----------------------------------------------------------
. spex travel2 (Greene & Hensher 1997 data on travel mode choice) . gen busXhinc = bus*hinc . gen trainXhinc = train*hinc . gen busXpsize = bus*psize . gen trainXpsize = train*psize . quietly clogit choice busXhinc busXpsize bus trainXhinc trainXpsize train /// > time invc, group(id) nolog . quietly asprvalue, x(psize=1) rest(asmean) base(car) save . estadd asprvalue, x(psize=2) rest(asmean) base(car) label(_cons) brief diff clogit: Predictions for choice Current Saved Diff bus .13919763 .21251462 -.07331699 train .44040644 .40365174 .0367547 car .42039591 .38383365 .03656226 added matrices: e(_estadd_asprval) : 1 x 3 . estadd asprvalue post scalars: e(N) = 456 macros: e(depvar) : "choice" e(cmd) : "estadd_asprvalue" e(model) : "clogit" e(properties) : "b" matrices: e(b) : 1 x 3 (predictions) . esttab, b not nostar eqlabels(none) /// > mtitle("psize=2 - psize=1") modelw(20) --------------------------------- (1) psize=2 - psize=1 --------------------------------- bus -0.0733 train 0.0368 car 0.0366 --------------------------------- N 456 ---------------------------------
. spex travel2 (Greene & Hensher 1997 data on travel mode choice) . quietly asmprobit choice time invc, case(id) alternatives(mode) nolog . estadd asprvalue, label(at means) asmprobit: Predictions for choice prob Train .76511556 Bus .09945779 Car .13547295 alternative-specific variables Train Bus Car time 632.10965 632.10965 632.10965 invc 33.951754 33.951754 33.951754 added matrices: e(_estadd_asprval) : 1 x 3 e(_estadd_asprval_asv) : 1 x 6 e(_estadd_asprval_csv) : 1 x 2 . estadd asprvalue, rest(asmean) label(at asmeans) asmprobit: Predictions for choice prob Train .42618456 Bus .12483268 Car .44901165 alternative-specific variables Train Bus Car time 643.44079 674.61842 578.26974 invc 48.618421 33.144737 20.092105 updated matrices: e(_estadd_asprval) : 2 x 3 e(_estadd_asprval_asv) : 2 x 6 e(_estadd_asprval_csv) : 2 x 2 . estadd asprvalue post, swap scalars: e(N) = 456 macros: e(depvar) : "choice" e(cmd) : "estadd_asprvalue" e(model) : "asmprobit" e(properties) : "b" matrices: e(b) : 1 x 6 (predictions) e(asv) : 2 x 6 (time, invc) e(csv) : 2 x 2 (hinc, psize) . esttab, unstack not nostar nomtitle nonumber -------------------------------------- at means at asmeans -------------------------------------- Train 0.765 0.426 Bus 0.0995 0.125 Car 0.135 0.449 -------------------------------------- N 456 --------------------------------------
. spex wlsrnk (1992 Wisconsin Longitudinal Study data on job values) . label variable value1 "est" . label variable value2 "var" . label variable value3 "aut" . label variable value4 "sec" . case2alt, casevars(fem hn) rank(value) case(id) alt(hashi haslo) gen(rank) (note: variable _altnum used since altnum() not specified) ranks indicated by: rank case identifier: id case-specific interactions: est* var* aut* sec* alternative-specific variables: hashi haslo . rologit rank estXfem estXhn est varXfem varXhn var /// > autXfem autXhn aut hashi haslo, group(id) reverse nolog Rank-ordered logistic regression Number of obs = 12904 Group variable: id Number of groups = 3226 Ties handled via the exactm method Obs per group: min = 4 avg = 4.00 max = 4 LR chi2(11) = 1947.39 Log likelihood = -6127.559 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ rank | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- estXfem | -.1497926 .0783025 -1.91 0.056 -.3032626 .0036774 estXhn | .1375338 .0394282 3.49 0.000 .060256 .2148116 est | -1.017202 .054985 -18.50 0.000 -1.12497 -.9094331 varXfem | -.1640212 .0728306 -2.25 0.024 -.3067666 -.0212759 varXhn | .2590404 .0370942 6.98 0.000 .1863372 .3317437 var | .528224 .0525894 10.04 0.000 .4251506 .6312974 autXfem | -.1401769 .0718325 -1.95 0.051 -.280966 .0006123 autXhn | .2133866 .0361647 5.90 0.000 .142505 .2842682 aut | -.1516741 .0510374 -2.97 0.003 -.2517055 -.0516427 hashi | .1780449 .0374744 4.75 0.000 .1045965 .2514934 haslo | -.2064148 .0425829 -4.85 0.000 -.2898758 -.1229539 ------------------------------------------------------------------------------ . estadd fitstat Measures of Fit for rologit of rank Log-Lik Full Model: -6127.559 D(12893): 12255.119 LR(11): 1947.390 Prob > LR: 0.000 AIC: 0.951 AIC*n: 12277.119 BIC: -109780.899 BIC': -1843.272 BIC used by Stata: 12359.237 AIC used by Stata: 12277.119 added scalars: e(dev) = 12255.119 e(dev_df) = 12893 e(lrx2) = 1947.3899 e(lrx2_df) = 11 e(lrx2_p) = 0 e(aic0) = .95141963 e(aic_n) = 12277.119 e(bic0) = -109780.9 e(bic_p) = -1843.2717 e(statabic) = 12359.237 e(stataaic) = 12277.119 e(n_rhs) = 10 e(n_parm) = 11 . estadd listcoef rologit (N=12904): Factor Change in Odds Odds of: ranked ahead vs ranked behind -------------------------------------------------- rank | b z P>|z| e^b -------------+------------------------------------ estXfem | -0.14979 -1.913 0.056 0.8609 estXhn | 0.13753 3.488 0.000 1.1474 est | -1.01720 -18.500 0.000 0.3616 varXfem | -0.16402 -2.252 0.024 0.8487 varXhn | 0.25904 6.983 0.000 1.2957 var | 0.52822 10.044 0.000 1.6959 autXfem | -0.14018 -1.951 0.051 0.8692 autXhn | 0.21339 5.900 0.000 1.2379 aut | -0.15167 -2.972 0.003 0.8593 hashi | 0.17804 4.751 0.000 1.1949 haslo | -0.20641 -4.847 0.000 0.8135 -------------------------------------------------- added matrices: e(b_fact) : 1 x 11 (e^b) . estadd listcoef, percent replace rologit (N=12904): Percentage Change in Odds Odds of: ranked ahead vs ranked behind -------------------------------------------------- rank | b z P>|z| % -------------+------------------------------------ estXfem | -0.14979 -1.913 0.056 -13.9 estXhn | 0.13753 3.488 0.000 14.7 est | -1.01720 -18.500 0.000 -63.8 varXfem | -0.16402 -2.252 0.024 -15.1 varXhn | 0.25904 6.983 0.000 29.6 var | 0.52822 10.044 0.000 69.6 autXfem | -0.14018 -1.951 0.051 -13.1 autXhn | 0.21339 5.900 0.000 23.8 aut | -0.15167 -2.972 0.003 -14.1 hashi | 0.17804 4.751 0.000 19.5 haslo | -0.20641 -4.847 0.000 -18.7 -------------------------------------------------- added matrices: e(b_pct) : 1 x 11 (%) . esttab, cell("b b_fact b_pct") scalars(aic0 aic_n bic0 bic_p) --------------------------------------------------- (1) rank b b_fact b_pct --------------------------------------------------- estXfem -.1497926 .8608865 -13.91135 estXhn .1375338 1.14744 14.74405 est -1.017202 .3616054 -63.83946 varXfem -.1640212 .848724 -15.1276 varXhn .2590404 1.295686 29.56862 var .528224 1.695918 69.59177 autXfem -.1401769 .8692045 -13.07955 autXhn .2133866 1.237863 23.78631 aut -.1516741 .8592683 -14.07317 hashi .1780449 1.194879 19.4879 haslo -.2064148 .8134955 -18.65045 --------------------------------------------------- N 12904 aic0 0.951 aic_n 12277.1 bic0 -109780.9 bic_p -1843.3 ---------------------------------------------------
. spex wlsrnk (1992 Wisconsin Longitudinal Study data on job values) . label variable value1 "est" . label variable value2 "var" . label variable value3 "aut" . label variable value4 "sec" . case2alt, casevars(fem hn) rank(value) case(id) alt(hashi haslo) gen(rank) (note: variable _altnum used since altnum() not specified) ranks indicated by: rank case identifier: id case-specific interactions: est* var* aut* sec* alternative-specific variables: hashi haslo . quietly rologit rank estXfem estXhn est varXfem varXhn var /// > autXfem autXhn aut hashi haslo, group(id) reverse nolog . estadd asprvalue, x(fem=1 hashi=0 haslo=0) base(sec) label(fem=1) brief save rologit: Predictions for rank prob est .08876531 var .41536212 aut .21456315 sec .28130943 added matrices: e(_estadd_asprval) : 1 x 4 e(_estadd_asprval_asv) : 1 x 8 e(_estadd_asprval_csv) : 1 x 2 . estadd asprvalue, x(fem=0 hashi=0 haslo=0) base(sec) label(fem=0) brief rologit: Predictions for rank prob est .09200718 var .43670157 aut .2202711 sec .25102016 updated matrices: e(_estadd_asprval) : 2 x 4 e(_estadd_asprval_asv) : 2 x 8 e(_estadd_asprval_csv) : 2 x 2 . estadd asprvalue, x(fem=0 hashi=0 haslo=0) base(sec) label(diff) brief diff rologit: Predictions for rank Current Saved Diff est .09200718 .08876531 .00324187 var .43670157 .41536212 .02133945 aut .2202711 .21456315 .00570795 sec .25102016 .28130943 -.03028926 updated matrices: e(_estadd_asprval) : 3 x 4 . estadd asprvalue post, swap scalars: e(N) = 12904 macros: e(depvar) : "rank" e(cmd) : "estadd_asprvalue" e(model) : "rologit" e(properties) : "b" matrices: e(b) : 1 x 12 (predictions) e(asv) : 2 x 8 (hashi, haslo) e(csv) : 2 x 2 (fem, hn) . esttab, not nostar unstack --------------------------------------------------- (1) rank fem=1 fem=0 diff --------------------------------------------------- est 0.0888 0.0920 0.00324 var 0.415 0.437 0.0213 aut 0.215 0.220 0.00571 sec 0.281 0.251 -0.0303 --------------------------------------------------- N 12904 ---------------------------------------------------
. spex couart2 (Academic Biochemists / S Long) . eststo poisson: quietly poisson art fem mar kid5 phd ment, nolog . eststo nbreg: quietly nbreg art fem mar kid5 phd ment, nolog . estadd fitstat : * . esttab, wide scalars(r2_mf r2_mfadj aic0 aic_n) mtitles ---------------------------------------------------------------------- (1) (2) poisson nbreg ---------------------------------------------------------------------- art fem -0.225*** (-4.11) -0.216** (-2.98) mar 0.155* (2.53) 0.150 (1.83) kid5 -0.185*** (-4.61) -0.176*** (-3.32) phd 0.0128 (0.49) 0.0153 (0.42) ment 0.0255*** (12.73) 0.0291*** (8.38) _cons 0.305** (2.96) 0.256 (1.85) ---------------------------------------------------------------------- lnalpha _cons -0.817*** (-6.81) ---------------------------------------------------------------------- N 915 915 r2_mf 0.0525 0.0304 r2_mfadj 0.0491 0.0261 aic0 3.622 3.427 aic_n 3314.1 3135.9 ---------------------------------------------------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex couart2 (Academic Biochemists / S Long) . eststo poisson: quietly poisson art fem mar kid5 phd ment, nolog . eststo nbreg: quietly nbreg art fem mar kid5 phd ment, nolog . estadd listcoef fem ment: * . estadd listcoef fem ment, percent nosd : * . esttab, cell("b_facts b_pcts") keep(fem ment) mtitles ---------------------------------------------------------------- (1) (2) poisson nbreg b_facts b_pcts b_facts b_pcts ---------------------------------------------------------------- fem .8940439 -10.59561 .8976965 -10.23035 ment 1.274107 27.41066 1.317603 31.76034 ---------------------------------------------------------------- N 915 915 ---------------------------------------------------------------- . eststo clear
. spex couart2 (Academic Biochemists / S Long) . eststo poisson: quietly poisson art fem mar kid5 phd ment, nolog . eststo nbreg: quietly nbreg art fem mar kid5 phd ment, nolog . estadd prchange: * . esttab, aux(dc) nopar wide mtitles ---------------------------------------------------------------------- (1) (2) poisson nbreg ---------------------------------------------------------------------- art fem -0.225*** -0.359 -0.216** -0.344 mar 0.155* 0.244 0.150 0.235 kid5 -0.185*** -0.228 -0.176*** -0.216 phd 0.0128 0.0203 0.0153 0.0241 ment 0.0255*** 0.391 0.0291*** 0.443 _cons 0.305** 0.256 ---------------------------------------------------------------------- lnalpha _cons -0.817*** ---------------------------------------------------------------------- N 915 915 ---------------------------------------------------------------------- dc in second column * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex couart2 (Academic Biochemists / S Long) . eststo poisson0: quietly poisson art fem mar kid5 phd ment, nolog . eststo nbreg0: quietly nbreg art fem mar kid5 phd ment, nolog . estadd prchange, outcome(0) : *0 . eststo poisson1: quietly poisson art fem mar kid5 phd ment, nolog . eststo nbreg1: quietly nbreg art fem mar kid5 phd ment, nolog . estadd prchange, outcome(1) : *1 . esttab, main(dc) nostar not scalars(outcome predval) mtitles ---------------------------------------------------------------- (1) (2) (3) (4) poisson0 nbreg0 poisson1 nbreg1 ---------------------------------------------------------------- fem 0.0725 0.0606 0.0431 0.0209 mar -0.0506 -0.0424 -0.0289 -0.0141 kid5 0.0455 0.0377 0.0277 0.0133 phd -0.00406 -0.00420 -0.00248 -0.00148 ment -0.0777 -0.0769 -0.0473 -0.0270 ---------------------------------------------------------------- N 915 915 915 915 outcome 0 0 1 1 predval 0.200 0.298 0.322 0.279 ---------------------------------------------------------------- dc coefficients . eststo clear
. spex couart2 (Academic Biochemists / S Long) . eststo poisson: quietly poisson art fem mar kid5 phd ment, nolog . estadd prvalue poisson: Predictions for art Confidence intervals by delta method 95% Conf. Interval Rate: 1.6101 [ 1.5265, 1.6937] Pr(y=0|x): 0.1999 [ 0.1832, 0.2166] Pr(y=1|x): 0.3218 [ 0.3116, 0.3320] Pr(y=2|x): 0.2591 [ 0.2538, 0.2643] Pr(y=3|x): 0.1390 [ 0.1290, 0.1491] Pr(y=4|x): 0.0560 [ 0.0490, 0.0629] Pr(y=5|x): 0.0180 [ 0.0149, 0.0212] Pr(y=6|x): 0.0048 [ 0.0037, 0.0059] Pr(y=7|x): 0.0011 [ 0.0008, 0.0014] Pr(y=8|x): 0.0002 [ 0.0001, 0.0003] Pr(y=9|x): 0.0000 [ 0.0000, 0.0001] fem mar kid5 phd ment x= .46010929 .66229508 .49508197 3.1031093 8.7672131 added matrices: e(_estadd_prvalue) : 1 x 66 e(_estadd_prvalue_x) : 1 x 5 . eststo nbreg: quietly nbreg art fem mar kid5 phd ment, nolog . estadd prvalue nbreg: Predictions for art Confidence intervals by delta method 95% Conf. Interval Rate: 1.602 [ 1.4936, 1.7104] Pr(y=0|x): 0.2978 [ 0.2788, 0.3167] Pr(y=1|x): 0.2794 [ 0.2727, 0.2860] Pr(y=2|x): 0.1889 [ 0.1859, 0.1919] Pr(y=3|x): 0.1113 [ 0.1051, 0.1174] Pr(y=4|x): 0.0607 [ 0.0549, 0.0664] Pr(y=5|x): 0.0315 [ 0.0273, 0.0357] Pr(y=6|x): 0.0158 [ 0.0130, 0.0186] Pr(y=7|x): 0.0077 [ 0.0061, 0.0094] Pr(y=8|x): 0.0037 [ 0.0028, 0.0046] Pr(y=9|x): 0.0018 [ 0.0012, 0.0023] fem mar kid5 phd ment x= .46010929 .66229508 .49508197 3.1031093 8.7672131 added matrices: e(_estadd_prvalue) : 1 x 66 e(_estadd_prvalue_x) : 1 x 5 . estadd prvalue post, swap: * . esttab, b(4) nostar ci wide compress /// > mtitles eqlabels(none) ---------------------------------------------------------------- (1) (2) poisson nbreg ---------------------------------------------------------------- mu 1.6101 [1.5265,1.6937] 1.6020 [1.4936,1.7104] 0 0.1999 [0.1832,0.2166] 0.2978 [0.2788,0.3167] 1 0.3218 [0.3116,0.3320] 0.2794 [0.2727,0.2860] 2 0.2591 [0.2538,0.2643] 0.1889 [0.1859,0.1919] 3 0.1390 [0.1290,0.1491] 0.1113 [0.1051,0.1174] 4 0.0560 [0.0490,0.0629] 0.0607 [0.0549,0.0664] 5 0.0180 [0.0149,0.0212] 0.0315 [0.0273,0.0357] 6 0.0048 [0.0037,0.0059] 0.0158 [0.0130,0.0186] 7 0.0011 [0.0008,0.0014] 0.0077 [0.0061,0.0094] 8 0.0002 [0.0001,0.0003] 0.0037 [0.0028,0.0046] 9 0.0000 [0.0000,0.0001] 0.0018 [0.0012,0.0023] ---------------------------------------------------------------- N 915 915 ---------------------------------------------------------------- 95% confidence intervals in brackets . eststo clear
. spex couart2 (Academic Biochemists / S Long) . drop if art==0 // artificially truncated the data (275 observations deleted) . eststo ztp: quietly ztp art fem mar kid5 phd ment, nolog . eststo ztnb: quietly ztnb art fem mar kid5 phd ment, nolog . estadd fitstat : * . esttab, wide scalars(r2_mf r2_mfadj aic0 aic_n) mtitles ---------------------------------------------------------------------- (1) (2) ztp ztnb ---------------------------------------------------------------------- art fem -0.229*** (-3.51) -0.245* (-2.52) mar 0.0965 (1.32) 0.103 (0.95) kid5 -0.142** (-2.93) -0.153* (-2.12) phd -0.0127 (-0.41) -0.00293 (-0.06) ment 0.0187*** (8.22) 0.0237*** (5.54) _cons 0.671*** (5.48) 0.355 (1.80) ---------------------------------------------------------------------- lnalpha _cons -0.603** (-2.68) ---------------------------------------------------------------------- N 640 640 r2_mf 0.0436 0.0212 r2_mfadj 0.0383 0.0146 aic0 3.394 3.232 aic_n 2172.1 2068.6 ---------------------------------------------------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex couart2 (Academic Biochemists / S Long) . drop if art==0 // artificially truncated the data (275 observations deleted) . eststo ztp: quietly ztp art fem mar kid5 phd ment, nolog . eststo ztnb: quietly ztnb art fem mar kid5 phd ment, nolog . estadd listcoef fem ment: * . estadd listcoef fem ment, percent nosd : * . esttab, cell("b_facts b_pcts") keep(fem ment) mtitles ---------------------------------------------------------------- (1) (2) ztp ztnb b_facts b_pcts b_facts b_pcts ---------------------------------------------------------------- fem .8926405 -10.73595 .8855335 -11.44665 ment 1.213629 21.36292 1.277855 27.78551 ---------------------------------------------------------------- N 640 640 ---------------------------------------------------------------- . eststo clear
. spex couart2 (Academic Biochemists / S Long) . drop if art==0 // artificially truncated the data (275 observations deleted) . eststo ztp: quietly ztp art fem mar kid5 phd ment, nolog . eststo ztnb: quietly ztnb art fem mar kid5 phd ment, nolog . estadd prchange: * . esttab, aux(dc) nopar wide mtitles ---------------------------------------------------------------------- (1) (2) ztp ztnb ---------------------------------------------------------------------- art fem -0.229*** -0.463 -0.245* -0.389 mar 0.0965 0.195 0.103 0.164 kid5 -0.142** -0.216 -0.153* -0.183 phd -0.0127 -0.0257 -0.00293 -0.00466 ment 0.0187*** 0.398 0.0237*** 0.396 _cons 0.671*** 0.355 ---------------------------------------------------------------------- lnalpha _cons -0.603** ---------------------------------------------------------------------- N 640 640 ---------------------------------------------------------------------- dc in second column * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex couart2 (Academic Biochemists / S Long) . drop if art==0 // artificially truncated the data (275 observations deleted) . eststo ztp0: quietly ztp art fem mar kid5 phd ment, nolog . eststo ztnb0: quietly ztnb art fem mar kid5 phd ment, nolog . estadd prchange, outcome(0) : *0 . eststo ztp1: quietly ztp art fem mar kid5 phd ment, nolog . eststo ztnb1: quietly ztnb art fem mar kid5 phd ment, nolog . estadd prchange, outcome(1) : *1 . esttab, main(dc) nostar not scalars(outcome predval) mtitles ---------------------------------------------------------------- (1) (2) (3) (4) ztp0 ztnb0 ztp1 ztnb1 ---------------------------------------------------------------- fem 0.0610 0.0662 0.0622 0.0207 mar -0.0259 -0.0281 -0.0263 -0.00874 kid5 0.0278 0.0307 0.0292 0.00993 phd 0.00331 0.000781 0.00348 0.000253 ment -0.0510 -0.0661 -0.0534 -0.0213 ---------------------------------------------------------------- N 640 640 640 640 outcome 0 0 1 1 predval 0.129 0.315 0.264 0.270 ---------------------------------------------------------------- dc coefficients . eststo clear
. spex couart2 (Academic Biochemists / S Long) . drop if art==0 // artificially truncated the data (275 observations deleted) . eststo ztp: quietly ztp art fem mar kid5 phd ment, nolog . estadd prvalue ztp: Predictions for art Uncond Cond Rate: 2.0507 2.3534 Pr(y=0|x): 0.1286 . Pr(y=1|x): 0.2638 0.3028 Pr(y=2|x): 0.2705 0.3104 Pr(y=3|x): 0.1849 0.2122 Pr(y=4|x): 0.0948 0.1088 Pr(y=5|x): 0.0389 0.0446 Pr(y=6|x): 0.0133 0.0152 Pr(y=7|x): 0.0039 0.0045 Pr(y=8|x): 0.0010 0.0011 Pr(y=9|x): 0.0002 0.0003 fem mar kid5 phd ment x= .440625 .671875 .471875 3.1539765 10.14375 added matrices: e(_estadd_prvalue) : 1 x 77 e(_estadd_prvalue_x) : 1 x 5 . eststo ztnb: quietly ztnb art fem mar kid5 phd ment, nolog . estadd prvalue ztnb: Predictions for art Uncond Cond Rate: 1.6097 2.3505 Pr(y=0|x): 0.3152 . Pr(y=1|x): 0.2698 0.3940 Pr(y=2|x): 0.1787 0.2609 Pr(y=3|x): 0.1067 0.1559 Pr(y=4|x): 0.0603 0.0881 Pr(y=5|x): 0.0329 0.0481 Pr(y=6|x): 0.0175 0.0256 Pr(y=7|x): 0.0092 0.0134 Pr(y=8|x): 0.0047 0.0069 Pr(y=9|x): 0.0024 0.0035 fem mar kid5 phd ment x= .440625 .671875 .471875 3.1539765 10.14375 added matrices: e(_estadd_prvalue) : 1 x 77 e(_estadd_prvalue_x) : 1 x 5 . estadd prvalue post, swap: * . esttab, b(4) nostar not mtitles eqlabels(none) -------------------------------------- (1) (2) ztp ztnb -------------------------------------- mu 2.0507 1.6097 0 0.1286 0.3152 1 0.2638 0.2698 2 0.2705 0.1787 3 0.1849 0.1067 4 0.0948 0.0603 5 0.0389 0.0329 6 0.0133 0.0175 7 0.0039 0.0092 8 0.0010 0.0047 9 0.0002 0.0024 -------------------------------------- N 640 640 -------------------------------------- . eststo clear
. spex couart2 (Academic Biochemists / S Long) . eststo zip: quietly zip art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . eststo zinb: quietly zinb art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . estadd fitstat : * . esttab, wide scalars(r2_mf r2_mfadj aic0 aic_n) mtitles ---------------------------------------------------------------------- (1) (2) zip zinb ---------------------------------------------------------------------- art fem -0.209*** (-3.30) -0.196** (-2.59) mar 0.104 (1.46) 0.0976 (1.16) kid5 -0.143** (-3.02) -0.152** (-2.80) phd -0.00617 (-0.20) -0.000700 (-0.02) ment 0.0181*** (7.89) 0.0248*** (7.10) _cons 0.641*** (5.28) 0.417** (2.90) ---------------------------------------------------------------------- inflate fem 0.110 (0.39) 0.636 (0.75) mar -0.354 (-1.11) -1.499 (-1.60) kid5 0.217 (1.10) 0.628 (1.42) phd 0.00127 (0.01) -0.0377 (-0.12) ment -0.134** (-2.96) -0.882** (-2.79) _cons -0.577 (-1.13) -0.192 (-0.14) ---------------------------------------------------------------------- lnalpha _cons -0.976*** (-7.21) ---------------------------------------------------------------------- N 915 915 r2_mf 0.0444 0.0372 r2_mfadj 0.0373 0.0292 aic0 3.534 3.416 aic_n 3233.5 3126.0 ---------------------------------------------------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex couart2 (Academic Biochemists / S Long) . eststo zip: quietly zip art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . eststo zinb: quietly zinb art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . estadd listcoef fem ment : * . estadd listcoef fem ment, percent nosd : * . esttab, cell("b_facts b_pcts") keep(fem ment) mtitles ---------------------------------------------------------------- (1) (2) zip zinb b_facts b_pcts b_facts b_pcts ---------------------------------------------------------------- art fem .9009586 -9.904139 .9071068 -9.289321 ment 1.187247 18.72472 1.264998 26.49976 ---------------------------------------------------------------- inflate fem 1.056254 5.625355 1.373176 37.31758 ment .2802993 -71.97007 .0002323 -99.97677 ---------------------------------------------------------------- N 915 915 ---------------------------------------------------------------- . eststo clear
. spex couart2 (Academic Biochemists / S Long) . eststo zip: quietly zip art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . eststo zinb: quietly zinb art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . estadd prchange: * . esttab, aux(dc) nopar wide mtitles ---------------------------------------------------------------------- (1) (2) zip zinb ---------------------------------------------------------------------- art fem -0.209*** -0.380 -0.196** -0.331 mar 0.104 0.258 0.0976 0.164 kid5 -0.143** -0.226 -0.152** -0.198 phd -0.00617 -0.0106 -0.000700 -0.00116 ment 0.0181*** 0.594 0.0248*** 0.422 _cons 0.641*** 0.417** ---------------------------------------------------------------------- inflate fem 0.110 0.636 mar -0.354 -1.499 kid5 0.217 0.628 phd 0.00127 -0.0377 ment -0.134** -0.882** _cons -0.577 -0.192 ---------------------------------------------------------------------- lnalpha _cons -0.976*** ---------------------------------------------------------------------- N 915 915 ---------------------------------------------------------------------- dc in second column * p<0.05, ** p<0.01, *** p<0.001 . eststo clear
. spex couart2 (Academic Biochemists / S Long) . eststo zip0: quietly zip art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . eststo zinb0: quietly zinb art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . estadd prchange, outcome(0) : *0 . eststo zip1: quietly zip art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . eststo zinb1: quietly zinb art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . estadd prchange, outcome(1) : *1 . esttab, main(dc) nostar not scalars(outcome predval) mtitles ---------------------------------------------------------------- (1) (2) (3) (4) zip0 zinb0 zip1 zinb1 ---------------------------------------------------------------- art fem 0.0609 0.0547 0.0439 0.0229 mar -0.0624 -0.0277 -0.0110 -0.0112 kid5 0.0429 0.0324 0.0198 0.0138 phd 0.00156 0.000186 0.00136 0.0000842 ment -0.173 -0.0752 0.00357 -0.0238 ---------------------------------------------------------------- N 915 915 915 915 outcome 0 0 1 1 predval 0.258 0.269 0.236 0.278 ---------------------------------------------------------------- dc coefficients . eststo clear
. spex couart2 (Academic Biochemists / S Long) . eststo zip: quietly zip art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . estadd prvalue zip: Predictions for art Expected y: 1.7032 Pr(Always0|z): 0.1388 Pr(y=0|x,z): 0.2580 Pr(y=1|x): 0.2357 Pr(y=2|x): 0.2331 Pr(y=3|x): 0.1536 Pr(y=4|x): 0.0760 Pr(y=5|x): 0.0300 Pr(y=6|x): 0.0099 Pr(y=7|x): 0.0028 Pr(y=8|x): 0.0007 Pr(y=9|x): 0.0002 x values for count equation fem mar kid5 phd ment x= .46010929 .66229508 .49508197 3.1031093 8.7672131 z values for binary equation fem mar kid5 phd ment z= .46010929 .66229508 .49508197 3.1031093 8.7672131 added matrices: e(_estadd_prvalue) : 1 x 72 e(_estadd_prvalue_x) : 1 x 5 e(_estadd_prvalue_x2) : 1 x 5 . eststo zinb: quietly zinb art fem mar kid5 phd ment, /// > inf(fem mar kid5 phd ment) nolog . estadd prvalue zinb: Predictions for art Expected y: 1.701 Pr(Always0|z): 0.0002 Pr(y=0|x,z): 0.2687 Pr(y=1|x): 0.2784 Pr(y=2|x): 0.1987 Pr(y=3|x): 0.1204 Pr(y=4|x): 0.0665 Pr(y=5|x): 0.0346 Pr(y=6|x): 0.0172 Pr(y=7|x): 0.0083 Pr(y=8|x): 0.0039 Pr(y=9|x): 0.0018 x values for count equation fem mar kid5 phd ment x= .46010929 .66229508 .49508197 3.1031093 8.7672131 z values for binary equation fem mar kid5 phd ment z= .46010929 .66229508 .49508197 3.1031093 8.7672131 added matrices: e(_estadd_prvalue) : 1 x 72 e(_estadd_prvalue_x) : 1 x 5 e(_estadd_prvalue_x2) : 1 x 5 . estadd prvalue post, swap: * . esttab, b(4) nostar not wide compress /// > mtitles eqlabels(none) ------------------------------ (1) (2) zip zinb ------------------------------ Ey 1.7032 1.7010 All0 0.1388 0.0002 0|xy 0.2580 0.2687 1|x 0.2357 0.2784 2|x 0.2331 0.1987 3|x 0.1536 0.1204 4|x 0.0760 0.0665 5|x 0.0300 0.0346 6|x 0.0099 0.0172 7|x 0.0028 0.0083 8|x 0.0007 0.0039 9|x 0.0002 0.0018 ------------------------------ N 915 915 ------------------------------ . eststo clear
. spex regjob2 (Academic Biochemists / S Long) . quietly regress job fem phd ment fel art cit . estadd fitstat Measures of Fit for regress of job Log-Lik Intercept Only: -567.512 Log-Lik Full Model: -519.397 D(401): 1038.793 LR(6): 96.230 Prob > LR: 0.000 R2: 0.210 Adjusted R2: 0.198 AIC: 2.580 AIC*n: 1052.793 BIC: -1371.725 BIC': -60.162 BIC used by Stata: 1080.872 AIC used by Stata: 1052.793 added scalars: e(dev) = 1038.7933 e(dev_df) = 401 e(lrx2) = 96.229915 e(lrx2_df) = 6 e(lrx2_p) = 1.533e-18 e(r2_adj) = .19828803 e(aic0) = 2.5803757 e(aic_n) = 1052.7933 e(bic0) = -1371.7248 e(bic_p) = -60.162312 e(statabic) = 1080.8722 e(stataaic) = 1052.7933 e(n_rhs) = 6 e(n_parm) = 7 . estadd listcoef regress (N=408): Unstandardized and Standardized Estimates Observed SD: .97360294 SD of Error: .8717482 ------------------------------------------------------------------------------- job | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- fem | -0.13919 -1.543 0.124 -0.0680 -0.1430 -0.0698 0.4883 phd | 0.27268 5.529 0.000 0.2601 0.2801 0.2671 0.9538 ment | 0.00119 1.692 0.091 0.0778 0.0012 0.0799 65.5299 fel | 0.23414 2.469 0.014 0.1139 0.2405 0.1170 0.4866 art | 0.02280 0.789 0.430 0.0514 0.0234 0.0528 2.2561 cit | 0.00448 2.275 0.023 0.1481 0.0046 0.1521 33.0599 ------------------------------------------------------------------------------- added matrices: e(b_xs) : 1 x 6 (bStdX) e(b_ys) : 1 x 6 (bStdY) e(b_std) : 1 x 6 (bStdXY) e(b_sdx) : 1 x 6 (SDofX) . esttab, aux(b_std) wide scalars(aic0 aic_n bic0 bic_p) ----------------------------------------- (1) job ----------------------------------------- fem -0.139 (-0.0698) phd 0.273*** (0.267) ment 0.00119 (0.0799) fel 0.234* (0.117) art 0.0228 (0.0528) cit 0.00448* (0.152) _cons 1.067*** ----------------------------------------- N 408 aic0 2.580 aic_n 1052.8 bic0 -1371.7 bic_p -60.16 ----------------------------------------- b_std in parentheses * p<0.05, ** p<0.01, *** p<0.001
. spex regjob2 (Academic Biochemists / S Long) . quietly regress job fem phd ment fel art cit . estadd prvalue, x(ment=min) label(ment=min) regress: Predictions for job 95% Conf. Interval Predicted y: 2.1795 [ 2.0743, 2.2846] fem phd ment fel art cit x= .38970588 3.2005637 0 .61764706 2.2769608 21.715686 added matrices: e(_estadd_prvalue) : 1 x 6 e(_estadd_prvalue_x) : 1 x 6 . estadd prvalue, x(ment=mean) label(ment=mean) regress: Predictions for job 95% Conf. Interval Predicted y: 2.2334 [ 2.1488, 2.318] fem phd ment fel art cit x= .38970588 3.2005637 45.470584 .61764706 2.2769608 21.715686 updated matrices: e(_estadd_prvalue) : 2 x 6 e(_estadd_prvalue_x) : 2 x 6 . estadd prvalue, x(ment=max) label(ment=max) regress: Predictions for job 95% Conf. Interval Predicted y: 2.8108 [ 2.1369, 3.4847] fem phd ment fel art cit x= .38970588 3.2005637 531.99988 .61764706 2.2769608 21.715686 updated matrices: e(_estadd_prvalue) : 3 x 6 e(_estadd_prvalue_x) : 3 x 6 . estadd prvalue post scalars: e(N) = 408 macros: e(depvar) : "job" e(cmd) : "estadd_prvalue" e(model) : "regress" e(properties) : "b" matrices: e(b) : 1 x 3 (predictions) e(se) : 1 x 3 (standard errors) e(LB) : 1 x 3 (lower CI bounds) e(UB) : 1 x 3 (upper CI bounds) e(Category) : 1 x 3 (outcome values) e(X) : 6 x 3 (fem, phd, ment, fel, art, cit) . esttab, ci nostar wide eqlabels(none) ------------------------------------------------ (1) job ------------------------------------------------ ment=min 2.179 [2.074,2.285] ment=mean 2.233 [2.149,2.318] ment=max 2.811 [2.137,3.485] ------------------------------------------------ N 408 ------------------------------------------------ 95% confidence intervals in brackets
. spex tobjob2 (Academic Biochemists / S Long) . quietly tobit jobcen fem phd ment fel art cit, ll(1) nolog . estadd fitstat Measures of Fit for tobit of jobcen Log-Lik Intercept Only: -604.850 Log-Lik Full Model: -560.252 D(400): 1120.504 LR(6): 89.195 Prob > LR: 0.000 McFadden's R2: 0.074 McFadden's Adj R2: 0.061 ML (Cox-Snell) R2: 0.196 Cragg-Uhler(Nagelkerke) R2: 0.207 McKelvey & Zavoina's R2: 0.205 Variance of y*: 1.488 Variance of error: 1.182 AIC: 2.786 AIC*n: 1136.504 BIC: -1284.003 BIC': -53.128 BIC used by Stata: 1168.594 AIC used by Stata: 1136.504 added scalars: e(dev) = 1120.5042 e(dev_df) = 400 e(lrx2) = 89.195123 e(lrx2_df) = 6 e(lrx2_p) = 4.452e-17 e(r2_mf) = .0737333 e(r2_mfadj) = .06050687 e(r2_ml) = .19636934 e(r2_cu) = .20704523 e(r2_mz) = .20535921 e(v_ystar) = 1.4875706 e(v_error) = 1.1820843 e(aic0) = 2.7855494 e(aic_n) = 1136.5042 e(bic0) = -1284.0027 e(bic_p) = -53.12752 e(statabic) = 1168.5943 e(stataaic) = 1136.5042 e(n_rhs) = 6 e(n_parm) = 8 . estadd listcoef tobit (N=408): Unstandardized and Standardized Estimates Observed SD: .97360294 Latent SD: 1.21966 SD of Error: 1.087237 ------------------------------------------------------------------------------- jobcen | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- fem | -0.23685 -2.032 0.043 -0.1156 -0.1942 -0.0948 0.4883 phd | 0.32258 5.047 0.000 0.3077 0.2645 0.2523 0.9538 ment | 0.00134 1.514 0.131 0.0880 0.0011 0.0722 65.5299 fel | 0.32527 2.656 0.008 0.1583 0.2667 0.1298 0.4866 art | 0.03391 0.929 0.353 0.0765 0.0278 0.0627 2.2561 cit | 0.00509 2.057 0.040 0.1683 0.0042 0.1380 33.0599 ------------------------------------------------------------------------------- added matrices: e(b_xs) : 1 x 6 (bStdX) e(b_ys) : 1 x 6 (bStdY) e(b_std) : 1 x 6 (bStdXY) e(b_sdx) : 1 x 6 (SDofX) . esttab, aux(b_std) wide scalars(r2_mfadj r2_ml r2_cu r2_mz) ----------------------------------------- (1) jobcen ----------------------------------------- model fem -0.237* (-0.0948) phd 0.323*** (0.252) ment 0.00134 (0.0722) fel 0.325** (0.130) art 0.0339 (0.0627) cit 0.00509* (0.138) _cons 0.685** ----------------------------------------- sigma _cons 1.087*** ----------------------------------------- N 408 r2_mfadj 0.0605 r2_ml 0.196 r2_cu 0.207 r2_mz 0.205 ----------------------------------------- b_std in parentheses * p<0.05, ** p<0.01, *** p<0.001
. spex tobjob2 (Academic Biochemists / S Long) . gen cens = -(jobcen<=1) . quietly cnreg jobcen fem phd ment fel art cit, censored(cens) nolog . estadd fitstat Measures of Fit for cnreg of jobcen Log-Lik Intercept Only: -604.850 Log-Lik Full Model: -560.252 D(400): 1120.504 LR(6): 89.195 Prob > LR: 0.000 McFadden's R2: 0.074 McFadden's Adj R2: 0.061 ML (Cox-Snell) R2: 0.196 Cragg-Uhler(Nagelkerke) R2: 0.207 McKelvey & Zavoina's R2: 0.205 Variance of y*: 1.488 Variance of error: 1.182 AIC: 2.786 AIC*n: 1136.504 BIC: -1284.003 BIC': -53.128 BIC used by Stata: 1168.594 AIC used by Stata: 1136.504 added scalars: e(dev) = 1120.5042 e(dev_df) = 400 e(lrx2) = 89.195123 e(lrx2_df) = 6 e(lrx2_p) = 4.452e-17 e(r2_mf) = .0737333 e(r2_mfadj) = .06050687 e(r2_ml) = .19636934 e(r2_cu) = .20704523 e(r2_mz) = .20535921 e(v_ystar) = 1.4875706 e(v_error) = 1.1820843 e(aic0) = 2.7855494 e(aic_n) = 1136.5042 e(bic0) = -1284.0027 e(bic_p) = -53.12752 e(statabic) = 1168.5943 e(stataaic) = 1136.5042 e(n_rhs) = 6 e(n_parm) = 8 . estadd listcoef cnreg (N=408): Unstandardized and Standardized Estimates Observed SD: .97360294 Latent SD: 1.21966 SD of Error: 1.087237 ------------------------------------------------------------------------------- jobcen | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- fem | -0.23685 -2.032 0.043 -0.1156 -0.1942 -0.0948 0.4883 phd | 0.32258 5.047 0.000 0.3077 0.2645 0.2523 0.9538 ment | 0.00134 1.514 0.131 0.0880 0.0011 0.0722 65.5299 fel | 0.32527 2.656 0.008 0.1583 0.2667 0.1298 0.4866 art | 0.03391 0.929 0.353 0.0765 0.0278 0.0627 2.2561 cit | 0.00509 2.057 0.040 0.1683 0.0042 0.1380 33.0599 ------------------------------------------------------------------------------- added matrices: e(b_xs) : 1 x 6 (bStdX) e(b_ys) : 1 x 6 (bStdY) e(b_std) : 1 x 6 (bStdXY) e(b_sdx) : 1 x 6 (SDofX) . esttab, aux(b_std) wide scalars(r2_mfadj r2_ml r2_cu r2_mz) ----------------------------------------- (1) jobcen ----------------------------------------- model fem -0.237* (-0.0948) phd 0.323*** (0.252) ment 0.00134 (0.0722) fel 0.325** (0.130) art 0.0339 (0.0627) cit 0.00509* (0.138) _cons 0.685** ----------------------------------------- sigma _cons 1.087*** ----------------------------------------- N 408 r2_mfadj 0.0605 r2_ml 0.196 r2_cu 0.207 r2_mz 0.205 ----------------------------------------- b_std in parentheses * p<0.05, ** p<0.01, *** p<0.001
. spex tobjob2 (Academic Biochemists / S Long) . gen jobcen0 = jobcen if jobcen>1 (99 missing values generated) . intreg jobcen0 jobcen fem phd ment fel art cit, nolog Interval regression Number of obs = 408 LR chi2(6) = 89.20 Log likelihood = -560.25209 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- fem | -.2368486 .1165852 -2.03 0.042 -.4653513 -.0083458 phd | .3225846 .0639229 5.05 0.000 .197298 .4478712 ment | .0013436 .0008876 1.51 0.130 -.000396 .0030832 fel | .3252657 .1224575 2.66 0.008 .0852534 .565278 art | .0339053 .0365017 0.93 0.353 -.0376367 .1054474 cit | .00509 .0024752 2.06 0.040 .0002388 .0099412 _cons | .6854061 .2182717 3.14 0.002 .2576014 1.113211 -------------+---------------------------------------------------------------- /lnsigma | .0836397 .0428043 1.95 0.051 -.0002552 .1675346 -------------+---------------------------------------------------------------- sigma | 1.087237 .0465384 .9997449 1.182386 ------------------------------------------------------------------------------ Observation summary: 99 left-censored observations 309 uncensored observations 0 right-censored observations 0 interval observations . estadd fitstat Measures of Fit for intreg of jobcen0 jobcen Log-Lik Intercept Only: -604.850 Log-Lik Full Model: -560.252 D(400): 1120.504 LR(6): 89.195 Prob > LR: 0.000 McFadden's R2: 0.074 McFadden's Adj R2: 0.061 ML (Cox-Snell) R2: 0.196 Cragg-Uhler(Nagelkerke) R2: 0.207 McKelvey & Zavoina's R2: 0.160 Variance of y*: 1.408 Variance of error: 1.182 AIC: 2.786 AIC*n: 1136.504 BIC: -1284.003 BIC': -53.128 BIC used by Stata: 1168.594 AIC used by Stata: 1136.504 added scalars: e(dev) = 1120.5042 e(dev_df) = 400 e(lrx2) = 89.195124 e(lrx2_df) = 6 e(lrx2_p) = 4.452e-17 e(r2_mf) = .0737333 e(r2_mfadj) = .06050687 e(r2_ml) = .19636935 e(r2_cu) = .20704524 e(r2_mz) = .16016798 e(v_ystar) = 1.4075249 e(v_error) = 1.1820845 e(aic0) = 2.7855494 e(aic_n) = 1136.5042 e(bic0) = -1284.0027 e(bic_p) = -53.127521 e(statabic) = 1168.5943 e(stataaic) = 1136.5042 e(n_rhs) = 6 e(n_parm) = 8 . estadd listcoef intreg (N=408): Unstandardized and Standardized Estimates LHS vars: jobcen0 jobcen Observed SD: .77904266 Latent SD: .48211618 SD of Error: .08363969 ------------------------------------------------------------------------------- | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- fem | -0.23685 -2.032 0.043 -0.1156 -0.4913 -0.2399 0.4883 phd | 0.32258 5.046 0.000 0.3077 0.6691 0.6382 0.9538 ment | 0.00134 1.514 0.131 0.0880 0.0028 0.1826 65.5299 fel | 0.32527 2.656 0.008 0.1583 0.6747 0.3283 0.4866 art | 0.03391 0.929 0.354 0.0765 0.0703 0.1587 2.2561 cit | 0.00509 2.056 0.040 0.1683 0.0106 0.3490 33.0599 ------------------------------------------------------------------------------- added matrices: e(b_xs) : 1 x 6 (bStdX) e(b_ys) : 1 x 6 (bStdY) e(b_std) : 1 x 6 (bStdXY) e(b_sdx) : 1 x 6 (SDofX) . esttab, aux(b_std) wide scalars(r2_mfadj r2_ml r2_cu r2_mz) ----------------------------------------- (1) jobcen0 ----------------------------------------- model fem -0.237* (-0.240) phd 0.323*** (0.638) ment 0.00134 (0.183) fel 0.325** (0.328) art 0.0339 (0.159) cit 0.00509* (0.349) _cons 0.685** ----------------------------------------- lnsigma _cons 0.0836 ----------------------------------------- N 408 r2_mfadj 0.0605 r2_ml 0.196 r2_cu 0.207 r2_mz 0.160 ----------------------------------------- b_std in parentheses * p<0.05, ** p<0.01, *** p<0.001
. spex tobjob2 (Academic Biochemists / S Long) . eststo tobit: quietly tobit jobcen fem phd ment fel art cit, ll(1) nolog . gen cens = -(jobcen<=1) . eststo cnreg: quietly cnreg jobcen fem phd ment fel art cit, censored(cens) n > olog . gen jobcen0 = jobcen if jobcen>1 (99 missing values generated) . eststo intreg: quietly intreg jobcen0 jobcen fem phd ment fel art cit, nolog . estadd prvalue, x(ment=min) label(ment=min) : * . estadd prvalue, x(ment=mean) label(ment=mean) : * . estadd prvalue, x(ment=max) label(ment=max) : * . estadd prvalue post : * . esttab, se nostar eqlabels(none) mtitles --------------------------------------------------- (1) (2) (3) tobit cnreg intreg --------------------------------------------------- ment=min 2.014 2.014 2.014 (0.0695) (0.0695) (0.0695) ment=mean 2.075 2.075 2.075 (0.0563) (0.0563) (0.0563) ment=max 2.729 2.729 2.729 (0.435) (0.435) (0.435) --------------------------------------------------- N 408 408 408 --------------------------------------------------- Standard errors in parentheses . eststo clear
The three models are formally equivalent in this case and, therefore, yield identical predictions.